Главная              Рефераты - Астрономия

Задачі з Хімії - реферат

Шановні студенти! Березень 2003 р.

Вивчення курсу фізичної хімії студентами заочного факультету відповідно до програми здійснюється протягом двох семестрів і складається з декількох етапів: - оглядові лекції; - самостійне вивчення курсу студентами з виконанням 4 контрольних робіт (по дві в кожному семестрі); - виконання лабораторних та захист контрольних робіт; - заліки за результатами виконання контрольних та лабораторних робіт наприкінці кожного семестру; - два письмових іспити.

З метою полегшення вивчення курсу підготовлено методичний посібник, що містить задачі для тренування з відповідями (такі самі задачі є предметом контрольних робіт), та інше (див. файл “схема інформації на дискеті”). Посібник буде доступний студентам у вигляді дискети (файл – задачі ”), його потрібно надрукувати на принтері або зробити ксерокопії в копіювальному центрі КПІ (100 аркушів формату А-4).

Для успішної роботи студентам, насамперед, потрібно ознайомитись з програмою курсу фізичної хімії (файл – “програма”) і взяти в бібліотеці рекомендовані підручники, за якими вивчати курс відповідно до цієї програми, конспекту оглядових лекцій та методичного посібника. Кожна з двох частин курсу включає дві контрольні роботи відповідно до теми.

Перша частина курсу:

Контрольна робота N1 на тему Хімічна термодинаміка ” (задачі 1 – 38).

Контрольна робота N2 на тему Хімічна рівновага (задачі 39 - 58) та Фазові рівноваги і учення про розчини ” (задачі 59 – 93).

Друга частина курсу :

Контрольна робота N3 на тему “Х імічна кінетика ” (задачі 94 – 122).

Контрольна робота N4 на тему “Р озчини електролітів, електрохімія (задачі 123 - 156).

Контрольні задачі в тексті посібника виділені жирним шрифтом, на них наведені відповіді, а суть контрольної роботи полягає в тому щоб пояснити ці відповіді. Після кожної контрольної задачі наведено роз вязання подібної задачі і стисло викладена його теоретична основа.

Для виконання контрольних робіт та на іспитах потрібен довідник Краткий справочник физико-химических величин ” А.А.Равделя и А.М.Пономарёвой, видання не пізніше 1983р. (цей довідник потрібно взяти в бібліотеці КПІ , або зробити ксерокопії фрагментів з цього довідника, які приводяться в файлі довідник ”), також інженерний калькулятор рівня не нижче МК 52, з індивідуальним джерелом живлення для роботи в умовах аудиторії.

Радимо студентам розв язувати задачі контрольних робіт самостійно та вдумливо, чернетки цієї роботи записувати в окремому зошиті, на основі якого оформити контрольні роботи. Чернетки можна використовувати потім як допоміжний матеріал на іспитах.

Програмою курсу передбачено 2 письмових екзамени з першої та другої частин курсу. На іспитах студенти можуть користуватись будь-якими підручниками, конспектами та іншими матеріалами, включаючи цей методичний посібник, власні чернетки контрольних робіт та інше. Білети на іспитах з курсу являють собою багатоваріантні задачі з великими масивами запитань, в кожному білеті 10 запитань, на які потрібно дати письмові відповіді Приклад оформлення екзаменаційного листа наводиться в файлі – іспит .

Тільки самостійне виконання студентами контрольних робіт призводить до успіху на іспитах, а тому не потрібно марно витрачати час на переписування готових рішень у товариша, користуючись тим, що для всіх студентів в контрольних роботах однакові завдання. На іспитах студенту відводиться 2 години для відповіді на 10 запитань, і лише ті студенти, які готувались самостійно та заздалегідь, встигають написати правильні і добре мотивовані відповіді та набрати достатню кількість балів для одержання позитивної оцінки.

Доц. П.М.Стаднійчук

ХІМІЧНА ТЕРМОДИНАМІКА

Задача N 1. Чи є можливість за допомогою хімічної термодинаміки розрахувати імовірність самодовільного протікання будь-якого хімічного процесу при певній температурі? (відповідь - так, ця можливість може бути реалізована шляхом розрахунку зміни ізобарного потенціалу ( D G ) в результаті протікання хімічної реакції при певній температурі - D G хр,Т)

Подібна задача. Які основні задачі вирішуються за допомогою хімічної термодинаміки? Термодинаміка використовується в багатьох областях науки, зокрема і в хімії. За допомогою хімічної термодинаміки (термохімії) можна вирішити такі основні задачі:

1) визначення знаку та величини теплового ефекту, який супроводжує хімічні реакції (розрахунок зміни ентальпії в результаті хімічного процесу при певній температурі - DHхр,Т );

2) визначення принципової можливості самодовільного протікання хімічного процесу за певних умов (розрахунок зміни ізобарного потенціалу в результаті хімічного процесу при певній температурі -DGхр,Т );

3) розрахунок ступеня перетворення вихідних речовин у продукти хімічної реакції за певних умов (розрахунок константи рівноваги хімічної реакції при певній температурі - Кp ).

Задача N 2. До якого класу систем (ізольованих, закритих чи відкритих) слід віднести систему, яка в своєму складі має стальний балон з воднем? (відповідь неможлива, тому що в умові задачі є невизначеність)

Подібна задача. Що в термодинаміці називають системою і як класифікують системі по їх взаємодії з навколишнім середовищем? Система – це об’єкт, який найчастіше стає предметом дослідження термодинаміки. Системою називається тіло чи група тіл, які за тими чи іншими ознаками відокремлені від навколишнього середовища. Ізольованими системами називають такі системи, які не обмінюються з навколишнім середовищем масою, енергією і не змінюють свій об’єм. Ідеального прикладу ізольованої системи навести неможливо, але таке поняття використовується для спрощення ряду логічних та теоретичних досліджень. Закритими системами називають такі системи, які не обмінюються з навколишнім середовищем масою, а обмінюються енергією. Прикладів таких систем у природі і техніці багато, наприклад, якщо стальний балон з воднем герметичний, то його можна віднести до закритої системи. Якщо була б можливість ідеально ізолювати такий балон від теплообміну та іншого впливу навколишнього середовища, то таку систему можна було б віднести до ізольованої. Відкритими системами називають такі системи, які обмінюються з навколишнім середовищем масою і енергією. Прикладів відкритих систем можна навести безліч. Саме відкриті системі є найбільш інтересними об’ектами вивчення з погляду практики, але вони одночасно є і найбільш складними об’єктами для їх теоретичного опису.

Задача N 3. До якого класу систем ( ізольованих, закритих чи відкритих ) можна віднести запаяну скляну ампулу з рідиною ? (відповідь – закритих)

Подібна задача. Чи може закрита система поглинати чи вилучати енергію в навколишне середовище? За визначенням, закрита система - це така, що може обмінюватись всіма видами енергії з навколішним середовищем, але не обмінюється масою. (відповідь – може)

Задача N4. До якого класу систем (гомогенних чи гетерогенних) слід віднести систему, що являє собою стакан з водою ? (відповідь – гетерогенних)

Подібна задача. До якого класу систем (гомогенних чи гетерогенних) слід віднести систему, що являє собою суміш льоду з водою? Системи залежно від їх будови поділяють на гомогенні (однорідні) та гетерогенні (неоднорідні). За визначенням, гетерогенна система - це така, в якій одна частина від іншої відділена межею розділу (поверхнею розділу), а самі частини відрізняються хімічними або фізичними властивостями. Гетерогенні системи в своєму складі мають дві і більше фаз. Фазою називають таку частину системи, кожний елемент якої не відрізняється від інших своїми хімічними і фізичними властивостями. У найпростішому випадку одну окрему фазу системи можна відділити від іншої механічним шляхом, наприклад, витягти кусочки льоду з води. Лід і вода мають межу (поверхню) розділу та різні фізичні властивості. (відповідь – гетерогенних).

Задача N5. Чи можна твердити, що система, яка має температуру 298,15 К, знаходиться за стандартних умов ? (відповідь – ні)

Подібна задача. За яких умов: стандартних чи нормальних температура системи більша? За визначенням, стандартні умови - це температура 25 о С (298,15 К) та тиск 1атм (1,013 x 105 Па), а нормальні умови - це атмосферний тиск та температура 0 о С (273,15 К) (відповідь – стандартних).

Задача N6. Чи відрізняються між собою поняття : хімічний рівноважний процес і термодинамічно оборотний процес ? (відповідь – відрізняються)

Подібна задача. Суміші газів водню, азоту та аміаку стиснули від 1 атм до 10 атм (при цьому зміниться співвідношення концентрацій газів у суміші), а потім знову розширили цю суміш до тиску в 1атм (співвідношення концентрацій газів відновиться до початкового). Чи можна назвати такий процес хімічно оборотним і термодинамічно оборотним? Термодинамічно оборотний процес - це такий, в якому система змінює свої параметри і знову повертається в початковий стан, не спричиняючи змін у навколишньому середовищі (такий процес можна тільки уявити, а ідеально реалізувати його неможливо). Хімічно оборотні процеси часто мають місце в природі і техніці. (відповідь – хімічно рівноважний, але не термодинамічно оборотний).

Задача N7. Чи має математичне обгрунтування перший закон термодинаміки ? ( відповідь – ні)

Подібна задача. Чи можливо записати у вигляді рівняння перший закон термодинаміки? Перший закон термодинаміки – поодинокий випадок закону збереження енергії, що використовується для опису термічних явищ. Перший закон термодинаміки є постулатом, тобто таким твердженням, яке приймається без доказу. Формулювань першого закону термодинаміки існує декілька, наведемо деякі з них: 1. Різні форми енергії переходять з одної в іншу в точно еквівалентних співвідношеннях.

2. Запас енергії ізольованої системи незмінний.

3. Вічний двигун першого роду неможливий (це такий, що може виконувати роботу без витрати енергії).

Є також декілька математичних виразів написання першого закону термодинаміки. З ними поступово ознайомимося, а поки деякі з них: dQ = dU +dA, де dQ – кількість теплоти, яка підводиться до системи; dU – збільшення внутрішньої енергії системи; dA – робота, яку виконує система. Якщо теплообмін системи протікає при постійному тиску, то тоді кількість теплоти позначають dQp і в термодинаміці її називають зміною ентальпії системи та позначають dH. . Якщо теплообмін системи протікає при постійному об’ємі, то таку кількість теплоти позначають dQv і вона кількісно дорівнює dU (зміні внутрішньої енергії системи).Робота dA = рdV, де р-тиск, dV- зміна об’єму системи. Тому перший закон термодинаміки часто записують у вигляді рівняння DH = DU + pDV. Якщо урахувати рівняння для ідеального газу pV = nRT, то можна записати pDV = DnRT, і тоді отримаємо ще один вираз першого закону термодинаміки DH = DU + DnRT , який також будемо часто використовувати. В останньому рівнянніDn – зміна числа молів газоподібних речовин у результаті реакції, R – універсальна газова стала (8,31 Дж/(моль . К), T – температура (К). (відповідь – можливо).

Задача N8. Які процеси можуть протікати в закритій системі при підводі до неї енергії, наприклад, шляхом її нагрівання при постійному тиску в системі? (відповідь - внутрішня енергія системи буде зростати, а сама система буде виконувати роботу проти зовнішніх сил)

Подібна задача. Як будуть змінюватись термодинамічні властивості закритої системи при поглинанні єю теплоти за умов, що об’єм системи остається незмінним?Наприклад, візьмемо систему, що складається з газу. Уявимо собі, що газ знаходиться в циліндрі з поршнем, який з силою Р тисне на нього (див. рисунок). Далі, для спрощення, будемо нехтувати теплом, що поглинається циліндром і поршнем, а також роботою тертя поршня і циліндра. Тобто, виділяємо в системі тільки газ і розглядаємо його як систему, що поглинає теплоту. При цьому розглянемо два випадки. Перший – газ нагрівається при сталому тиску, кількість теплоти, що він поглинає, позначимо Qp. Другий – газ нагрівається при сталому об’ємі, кількість теплоти, що поглинається при цьому, позначимо Qv. Якщо газ будемо нагрівати до однакової температури, то кількість теплоти, що поглинається в першому та другому випадках, буде різною. У першому випадку частина теплоти піде на зміну (збільшення) внутрішньої енергії газу (DU) і на виконання роботи А проти сили Р переміщенням поршня на величину Dl (А = pDV, де DV - зміна об’єму газу). У другому випадку Dl = 0; DV = 0; А = 0, а теплота буде витрачена тільки на зміну внутрішньої енергії газу (DU). (Відповідь – А = 0, DU>0)


р

D l


Q ГАЗ

Задача N9. Як зміниться внутрішня енергія ізольованої системи при протіканні в ній будь - якого процесу ? (відповідь – не зміниться)

Подібна задача. Чи може виконати якусь роботу ізольована система проти зовнішніх сил? За визначенням, ізольована система - це така, що не обмінюється з навколишнім середовищем масою, енергією і не змінює свій об’єм (DV). Виходячи з першого закону термодинаміки, що записаний у вигляді DH = DU + рDV або dQ = dU +dA, dA = 0, бо DV, а DH = 0, за визначенням. (відповідь – не може).

Задача N10. Чи може система виконати роботу без підведення енергії до системи ? (відповідь – може, за рахунок зменшення її внутрішньої енергії)

Подібна задача. Чи може система постійно виконувати роботу без підведення енергії до системи?

Будь - яка система не може тривало виконувати роботу без витрати енергії, що витікає з першого закону термодинаміки, який можна записати у вигляді: А= pDV= DH - DU. Підведення енергії за умови задачі відсутнє, тобто DH = 0, а за рахунок зменшення внутрішньоі енергії (-DU) робота не може виконуватись постійно, тому що її запас обмежений. (відповідь – ні)

Задача N11. Чи може система виконати будь-яку роботу, якщо її об єм не змінюється ? (відповідь – ні)

Подібна задача. На що витрачається теплова енергія, яка підводиться до системи при незмінному її об’ємі? З першого закону термодинаміки у виглядіDH = DU + pDV витікає, що при незмінному об’ємі системи, тобто DV= 0, А=0 і DH = DU. З підведенням теплоти до системи DH >0 (процес ендотермічний, система поглинає енергію) вся теплота витрачається на збільшення внутрішньої енергії системи (DU > 0). З відведенням теплоти від системи DH < 0 (процес екзотермічний, система виділяє енергію в навколишнє середовище) вся теплота виділяється в навколишнє середовище за рахунок зменшення внутрішньої енергії системи (DU < 0). (відповідь – на збільшення внутрішньої енергії системи)

Задача N12. Чи може температура системи залишатися незмінною з підведенням до неї певної кількості енергії (теплоти) ? ( відповідь – може)

Подібна задача. Які процеси відбуваються в системі за збільшенням її внутрішньої енергії? Внутрішня енергія системи, за визначенням, складається з поступальної, обертальної та енергії коливань всіх частин системи, а також енергії зв’язку частин системи між собою. Таке визначення свідчить про те, що поняття внутрішньої енергії не просте, а тому потребує трохи пояснень. Частинами системи можуть бути великі і малі її частини, зокрема, окремі атоми, молекулярні групи і нуклони, які є складовими частинами ядер атомів. Якщо узяти за приклад системи шматок заліза за стандартних умов, то в кристалічній решітці кожний атом коливається з деякою амплітудою. Вона залежить від температури і з її підвищенням (нагріванням заліза) зростає. З нагріванням частина теплоти витрачається на коливання атомів у кристалічній решітці, а з охолодженням амплітуда коливань зменшується, і енергія коливань атомів передається в навколишнє середовище. Таким чином, теплота, яка підводиться до системи, може витрачатись на поступальні, коливальні таобертальні рухи частин системи, а також атомів чи їх угрупувань. Енергія зв’язку - це фактично енергія, яка вилучається при перекриванні електронних орбіталей електронів окремих атомів між собою, а також енергія зв’язку нуклонів в ядрі атомів. З утворенням цих зв’язків енергія вилучається в навколишнє середовище, і для того, щоб їх розірвати, потрібно таку ж кількість енергії витратити. Енергія зв’язку електронів - це рівень хімічних і низки фізичних процесів, а енергія зв’язку нуклонів - це рівень ядерних реакцій. Визначити весь комплекс складових внутрішньої енергії (U) неможливо, а тому в хімічній термодинаміці розраховують тільки зміну внутрішньої енергії системи (DU). З тієї ж причини неможливо розрахувати абсолютне значення ентальпії системи, бо ентальпія і внутрішня енергія зв’язані між собою (див. перший закон термодинаміки), а тому визначають тільки її зміну (DH). (відповідь – складний комплекс процесів, пояснення див. вище)

Задача N13. За яких умов потрібно більше теплоти (при р = const чи v = const), щоб нагріти циліндр з газом від температури Т1 до температури Т2 ? ( відповідь – при р = const)

Подібна задача. За яких умов нагрівання газу буде супроводжуватись тільки зміною внутрішньої енергії системи? Відповідно до першого закону термодинаміки DH = DU + pDV або Qp = Qv + DV. Звідси виходить, що коли об’єм системи не змінюється (DV = 0), то DH = DU або Qp = Qv. Тому вся теплота, що підведена до системи при незмінному об’ємі, витратиться тільки на збільшення внутрішньої енергії системи. (відповідь – при постійному об’ємі)

Задача N14. Тепловий ефект якої з наведених нижче хімічних реакцій відповідає стандартній теплоті (ентальпії) утворення вуглекислого газу ?

1. Cалмаз + О2 = СО2

2. Сграфіт + О2 = СО2

3. 2СО + О2 = 2СО2

4. 1/2Сграфіт + ½О2 = ½ СО2 (відповідь – другої)

Подібна задача. Яка кількість теплоти вилучається чи поглинається з утворенням 1 г води з кисню та водню за стандартних умов? Задачу можна розв’язати, використавши значення стандартної теплоти (ентальпії) утворення води. Стандартною ентальпіею (теплотою) утворення хімічної сполуки називається така кількість теплоти, яка вилучається чи поглинається з утворенням одного моля речовини за стандартних умов з простих речовин, що взяті в стійкій формі. Це одне з основних понять у термодинаміці. Значення стандартної ентальпії утворення наведені в довідниках з термодинамічних властивостей речовин, позначається вона DHо і має розмірність кДж/моль. Для простих речовин, що взяті в стійкій формі, DHо = 0.Так, стандартна ентальпія утворення складної речовини, наприклад, сірчаної кислоти (див. рекомендований довідник) має значення -813,99 кДж/моль. Це означає, що підчас протікання реакції Н2 + S + 2O2 = H2 SO4 , в результаті якої утворюється 1 моль (98г) сірчаної кислоти, вилучається (реакція екзотермічна DHо < 0) 813990 Дж теплоти. Термодинаміка завжди оперує поняттями початковий та кінцевий стан системи. Так, якщо система в початковому стані являла собою суміш простих речовин (Н2 + S + 2O2 ), то в кінцевому стані вона є хімічною сполукою (H2 SO4 ). При цьому система вилучила в навколишнє середовище 813990 Дж теплоти. Виходячи з останнього прикладу, зрозуміло, що поняття стандартної ентальпії утворення є формалізованим, тому що наведена реакція за стандартних умов протікати не буде. Повертаючись до запитання в задачі, за допомогою довідника знайдемо, що DHо для рідкої води має значення -285,83 кДж/моль, тобто з утворенням 18 г води вилучається 285830 Дж теплоти, а з утворенням 1г вилучається 15879 Дж теплоти. (відповідь – вилучається 15879 Дж теплоти)

Задача N15. Розрахуйте, яка кількість теплоти вилучається під час взаємодії 1 м3 метану з киснем за стандартних умов при р = const та v =const. (далі будемо писати скорочено ст.ум. , а коли умови не указані, то будемо визнавати їх стандартними). ( відповідь - при р =const вилучається 2,22 × 104 , а при v=const - 2,20 × 104 кДж теплоти)

Подібна задача. Розрахуйте, яка кількість теплоти вилучається, якщо 1кг оксиду алюмінію прореагує з сірчаним ангідридом при постійному об’ємі та температурі 298 К за реакцією:

Al2 O3( кр) + 3SO3(г) = Al2 (SO4 )3(кр) .

Відповідно до закону Гесса розрахуємо зміну ентальпії в результаті хімічної реакції (DHхр ,298 ) (тепловий ефект реакції) як різницю між сумою стандартних ентальпій утворення продуктів реакціі (DHо пр ) та сумою стандартних ентальпій утворення вихідних речовин (DHо ком ). Запишемо це у вигляді рівняння для даної реакції, підставимо в нього значення стандартних ентальпій утворення продуктів та вихідних речовин, скориставшись довідником, та розрахуємо цю суму ентальпій

D Hхр ,298 = ( D H0 Al2 (SO4 )3 ) - ( D H0 Al2 O3 + 3 D H0 SO3 ) =

= ( - 3441,80) - (-1675,69 + 3(-395,85)) =

= -578,56 кДж / моль

Перед розв’язанням задачі далі прокоментуємо одержаний результат. Значення зміни ентальпії в результаті реакції менше нуля (DH<0), тобто це єкзотермічна хімічна реакція. А ще можна сказати так, що при взаємодії 1 молю Al2 O3( кр) (342 г) з трьома молями SO3(г) (80 г) вилучиться в навколишне середовище 578,56 кДж теплоти. Така кількість теплоти вилучиться, якщо реакція буде протікати при постійному тиску (DH = Qp ), а нам потрібно знайти Qv або зміну внутрішньої енергії в результаті цієї реакції (нагадаємо, що DU = Qv ). Для цього використаємо такий вираз першого закону термодинаміки:DH = DU + DnRT, де Dn – зміна числа молів газоподібних речовин в результаті реакції, R – універсальна газова стала (8,31 Дж/(моль . К), T – температура (К). Це рівняння установлює зв’язок між зміною внутрішньої енергії та зміною ентальпії в результаті хімічної реакції. У нашому випадку Dn = 0 – 3 = -3. Тепер є можливість розрахувати зміну внутрішньої енергії DU = DH - DnRT = -578560 – (-3) 8,31× 298 = = -571130 Дж/моль . Зверніть увагу на те, що коли реакція протікала б при постійному об’ємі, а не при постійному тиску, то кількість теплоти, яка вилучається, була б меншою на 7429 Дж. Таким чином, знайдено, що під час взаємодії 342 г оксиду алюмінію з сірчаним ангідридом при постійному об’ємі вилучається 571,130 кДж теплоти, а для 1 кг це значення буде 1669,97 кДж (відповідь – вилучиться 1669,97 кДж теплоти)

Задача N16. Яка кількість теплоти вилучиться чи поглинеться з утворенням 1 м3 NO за ст.ум. відповідно до реакції N2 + O2 = 2NO ?

( відповідь - поглинеться 4,07 × 103 кДж теплоти)

Подібна задача. Див. приклад до задачі N15.

Задача N17. Як співвідносяться між собою D H і D U для реакцій :

N2 + 3H2 = 2NH3 ( відповідь - D H < D U)

N2 + O2 = 2NO ( відповідь - D H = D U)

2N2 + O2 = 2N2 O ( відповідь - D H > D U)

Подібна задача.Як співвідносяться між собою DH і DU для реакції 2C + O2 = 2CO ? Визначимо зміну числа молів газоподібних речовин для цієї реакції: Dn = 2 – 1 = 1 (зверніть увагу на те, що кількість молів вуглецю, який вступає в реакцію, не ураховується, бо це речовина кристалічна за ст.ум.). Підставимо значення Dn в перший закон термодинаміки DH = DU + DnRT = DU + RT. Звідси видно, що DH > DU . (відповідь - DH > DU )

Задача N18. В якому випадку вилучиться більша кількість теплоти : під час взаємодії 1 кг водню чи 1 кг вуглецю з киснем за ст.ум.? (відповідь – водню)

Подібна задача.Як розрахувати теплотворну здатність магнію в Дж/г за стандартною ентальпією утворення MgO? Теплотворна здатність - це така кількість теплоти, що вилучається під час горіння речовини в кисні в розрахунку на одиницю маси. Можна розрахувати зміну ентальпії в результаті реакції 2Mg + O2 = 2MgO (див. задачу N15), яка буде рівною -1202,98 кДж/моль, а виражаючи цю величину в кДж/г, одержимо значення -24753 Дж/г. Тобто під час горіння 1г магнію в кисні вилучиться 24753 Дж теплоти. Зверніть увагу на те, що коли йдеться про теплоту згоряння різних речовин, то в довідниках ці значення мають додатні, а не від’ємні значення. (відповідь - 24753 Дж/г)

Задача N19. Нагрівання на 1 о С якої з речовин: 1г свинцю чи 1г вуглецю потребує більшої витрати теплоти? (відповідь–1г вуглецю)

Подібна задача.Розрахувати наближено, скільки теплоти потрібно для нагрівання від температури 25 до 175 о С заліза масою 10г. Кількість теплоти, яка поглинається з нагріванням або вилучається з охолодженням будь - якої речовини, залежить від її теплоємності. Теплоємність - це така кількість теплоти, яку потрібно витратити на нагрівання 1 молю речовини на 1 К. Ця важлива характеристика речовин може бути розрахована теоретично, а частіше визначається експериментально. Її значення наводяться в довідниках поряд з іншими термодинамічними характеристиками речовин. У довідниках теплоємність наводиться за ст.ум., позначається Со р (ізобарна теплоємність) і має розмірність Дж/(моль.К). За умови цієї задачі маса заліза 10 г (n = 0,179 моля), а зміна температури DТ = 175 - 25 = 150 о С. Зміну ентальпії при нагріванні 10г заліза від 25 до 175 о С, узявши з довідника Со р,Fe = 24,98 Дж/(моль.К), розрахуємо за рівняннямDH = n×Со р×DT = 0,179× 24,98×150 = 670 Дж. (відповідь - 670 Дж)

Задача N20. Розрахувати теплоємність нікелю при 300 о С в Дж /( г × К). (відповідь – 0,577 Дж /( г × К))

Подібна задача.Розрахувати теплоємність води при 80 о С.Теплоємність речовин залежить від температури і для кожної речовини ця залежність індивідуальна. Розрахувати ізобарну теплоємність речовини при будь - якій температурі (Ср,т) можна за допомогою рівнянняСр,т = a + bT + cT2 + c’T-2 . У цьому рівнянні коефіцієнти a, b, c і c’ - величини, які занесені в довідники поряд з теплоємністю речовин за ст.ум., Т – температура (К). Використаємо це рівняння для розрахунку теплоємності води при 80 о С:

C p,H2 O,353 = a + bT + cT2 +c’T-2 =

= 39,02 + 76,4 × 10-3 × 353 + 0 × 3532 + 11,96 × 105 × 353-2 =

= 75,57 Дж / (моль × К) (відповідь - 75,57 Дж/(моль×К)

Задача N21. Розрахуйте наближено (тобто нехтуючи залежністю Ср = f(T) та допускаючи, що Ср = const = Co p), яка кількість теплоти потрібна для нагрівання від температури 25 до 125 о С 1 м3 кисню при постійному об ємі. (відповідь – 94 кДж)

Подібна задача. За яких умов (ізохорних чи ізобарних) потрібна більша кількість теплоти для нагрівання газу? Для ідеальних газів величини теплоємності за ізобарних (Cp) та ізохорних (Cv) умов зв’язані між собою рівнянням Ср – Сv = R, яке часто без суттєвої похибки використовують для реальних газів при невеликому тиску. З цього рівняння видно, що теплоємність при нагріванні газу за ізобарних умов більше, ніж за ізохорних, на величину роботи (R), яку виконує газ при розширенні за ізобарних умов. (відповідь – за ізобарних умов)

Задача N22. Яке значення зміни теплоємності ( D Ср.хр ) в результаті протікання хімічної реакції Fe2 O3 +3CO = 2Fe + 3CO2 за ст.ум. ? (відповідь - D Ср.хр = -29,73 Дж / (моль × К))

Подібна задача.Який знак можуть мати значення зміни теплоємності в результаті протікання хімічних реакцій (DСр,хр) ? У результаті протікання хімічних реакцій виникають нові речовини, які мають інші фізичні (термодинамічні) властивості, а тому змінюється теплоємність системи у цілому. Величина цієї зміни має суттєве значення для розрахунків теплових ефектів реакцій (це розглядається нижче). Зміну теплоємності в результаті хімічної реакції за ст.ум. розраховують як різницю між сумою теплоємностей продуктів реакції та сумою теплоємностей компонентів з урахуванням стехіометричних коефіцієнтів. Ця різниця може мати будь - який знак, зокрема може дорівнювати нулеві, але останнє мало імовірне. (відповідь – значення зміни теплоємності в результаті хімічних реакцій можуть мати додатній та від’ємний знак)

Задача N23. Розрахуйте наближено, яка кількість теплоти вилучається чи поглинається під час взаємодії 1кг оксиду заліза (3) з оксидом вуглецю (2) за реакцією Fe2 O3 +3CO= 2Fe + 3CO2 при700 о С.

(відповідь – вилучається 293,4 кДж)

Подібна задача.Розрахуйте наближено та точно значення теплового ефекту реакції

Na2 CO3 + 2SiO2 = Na2 Si2 O5 + CO2 при температурі 700 К. Зміна ентальпії в результаті реакції (тепловий ефект реакції) при нестандартній температурі (DHхр ,Т ) буде відрізнятись від зміни ентальпії за ст. ум. (DHхр ,298 ), томущо теплоємність окремих речовин (Ср), а також і зміна теплоємності в результаті реакції (DСр,хр ) залежать від температури. Зв’язок між зміною ентальпії (DHхр ), зміною теплоємності (DСр,хр )та температурою (Т) дає рівняння Кірхгофа, яке зараз виведемо та розглянемо, як використовують його для розрахунків теплових ефектів реакцій при нестандартних температурах. Теплоємність взагалі - це похідна зміни ентальпії по температурі (dH/dT = Cp, a dU/dT = Cv), а тому похідна зміни ентальпії хімічної реакції по температурі дорівнює зміні теплоємності в результаті реакції (dDH/dT = DCp). Запишемо останнє рівняння так: dDH = DCp dT; візьмемо визначений інтеграл від температури 298 до Т298 ò Т dDH = 298 ò Т DCp×dT і будемо мати рівняння КірхгофаD HT = D H298 + 298 ò Т D Cp × dT . Це рівняння ілюструє залежність зміни ентальпії в результаті хімічної реакції від температури (DHT ) і має дві складові частини. Одна з них - це тепловий ефект хімічної реакції за ст.ум. (DH298 ), який визначаться за допомогою закону Гесса (див. задачу N 15), а друга являє собою інтеграл, який може бути взятий по-різному, залежно від умов, які задаються. Так, якщо зробити припущення, що DCp не залежить від температури і дорівнює DCp,298 , то одержимо рівняння, за допомогою якого можна проводити наближені розрахунки DHT : D HT = D H298 + D Cp,298 ( Т – 298) .Для того, щоб отримати формулу для точних розрахунків, потрібно урахувати залежність DСр від температури, яка має такий самий вигляд, як і залежність Ср від температури (див. задачу N20):DСр = Da + DbT + DcT2 + Dc’T-2 , деDa, Db, Dc’ і Dc – різниці коефіцієнтів у рівнянні реакції. Нижче покажемо, як їх розрахувати, а поки що підставимо цю залежність під знак інтеграла і візьмемо цей інтеграл:

D HT = D H298 + 298 ò Т (D a + D bT + D cT2 + D c’T-2 ) dT =

= D H298 + D a(T-298)+ D b/2 (T2 -2982 )+ D c/3 (T3 – 2983 )+ D c’/(-1) (T-1 – 298-1 ).

Тепер є можливість наближено та точно розрахувати тепловий ефект реакції, але для цього спочатку складемо таблицю, в яку внесемо всі потрібні дані з довідникавідповідно до реакції

Na2 CO3 + 2SiO2 = Na2 Si2 O5 + CO2

Речовина DHo , кДж/моль Со р, Дж/(моль ×К) а b×103 c’×10-5 c×106

Na2 Si2 O5 - 2470,07 156,50 185,69 70,54 - 44,64 -

CO2 - 393,51 37,11 44,14 9,04 - 8,54 -

Na2 CO3 - 1130,80 111,30 70,63 135,6 - -

2SiO2 - 1821,94 88,86 93,98 68,62 - 22,6 -

Dхр 89,16 -6,55 65,22 -124,64 -30,58 0,0

Підставимо значення зміни (Dхр) всіх термодинамічних параметрів у рівняння для наближеного та точного розрахунку теплового ефекту хімічної реакціїпри 700 К.

Наближений розрахунок:

DH700 = DH298 + DCp,298 (Т – 298) = 89160 + (- 6,55)(700 – 298) = 86527 Дж/моль ;

Точний розрахунок:

DH700 = DH298 + Da(T-298) + Db/2 (T2 - 2982 ) + Dc/3 (T3 – 2983 )+ Dc’/(-1) (T-1 – 298-1 ) =

= 89160 + 65,22(700-298)+(-124,64×10-3 )/2 (7002 – 2982 )+(0,0×10-6)/3(7003 -2983 ) + + (-30,58×105 )/(-1) (1/700 - 1/298) = 58244 Дж/моль ;

(відповідь - за наближеним розрахунком - 86,6 кДж/моль;

за точним розрахунком - 58,244 кДж/моль)

Задача N24. Який знак має зміна теплоємності в результаті деякої хімічної реакції, якщо відомо, що зі збільшенням температури кількість теплоти, що вилучається в результаті реакції, зростає ?

(відповідь - D Cpхр < 0)

Подібна задача.Як впливає знак зміни теплоємності в результаті хімічної реакції (DCpхр ) на зміну ентальпії в результаті хімічної реакції (DHT )? Вплив DCpхр на DHT можна легко пояснити за допомогою рівняння для наближених розрахунків залежності теплового ефекту реакцій від температури (DHT = DH298 + DCp,298 (Т – 298). Із цього рівняння видно, що коли зміна теплоємності менше нуля, то зміна ентальпії з підвищенням температури буде дедалі меншою (кількість же теплоти, яка вилучається в результаті реакції, буде зростати з підвищенням температури, або ще можна сказати, що реакція буде все більше й більше екзотермічною з підвищенням температури). Якщо DCp > 0, то все буде навпаки. У випадку, коли DCp = 0, тепловий ефект реакції взагалі не буде залежати від температури, але такий випадок мало імовірний. (відповідь – при DCp > 0DHT зростає, а при DCp < 0DHT зменшується)

Задача N25. За яких умов (при 1000 чи 1500 К) вилучиться більша кількість теплоти при згорянні вуглецю в кисні ?

( відповідь – при 1500 К) Подібна задача.Див. задачу N24.

Задача N26. Чи може мати екстремум залежність теплового ефекту реакції від температури ? ( відповідь– так, може бути максимум та мінімум)

Подібна задача. Див. задачуN24, а також потрібно урахувати, що DCp може змінювати знак зі зміною температури. Такий випадок ілюструє рисунок, що наведений нижче.


Cp Cp продуктів

Cp компонент і в


D Cp


T1 T

Задача N27. Чи бувають хімічні процеси самодовільними і несамодовільними ? ( відповідь – так, бувають)

Подібна задача.Чим відрізняються між собою самодовільні і несамодовільні процеси?Самодовільні процеси - це такі, що протікають у системі без зовнішнього впливу. Для протікання несамодовільного процесу у системі потрібно вплинути на систему тим чи іншим чином. Самодовільні процеси протікають у системі, яка прямує до стану рівноваги. Наприклад, маятник буде коливатись деякий час, з часом коливання погаснуть, і тоді наступить стан рівноваги. Щоб примусити маятник знову коливатись, потрібно відхилити його від стану рівноваги за рахунок якоїсь сили (несамодовільній процес), тобто несамодовільній процес протікає в напрямку від стану рівноваги за рахунок дії на систему сил із зовнішнього середовища. (відповідь – несамодовільні процеси протікають під дією зовнішньої сили і віддаляють систему від стану рівноваги, а протікання самодовільних процесів не супроводжується дією зовнішніх сил, такі процеси наближають систему до стану рівноваги)

Задача N28. Чи може самодовільно зменшуватись ентропія в закритих та відкритих системах ? ( відповідь - може)

Подібна задача.Чи може самодовільно зменшуватись ентропія в ізольованих системах? Щоб відповісти на це запитання, нагадаємо, що таке ентропія і розглянемо деякі питання відносно другого закону термодинаміки. Ентропія - це одна з важливих термодинамічних величин, а поняття про ентропію має загальноосвітнє значення, тому обов’язково потрібно самостійно ознайомитись з цим поняттям за підручником. Для розв’язання задач у нашому випадку буде достатньо такого визначення ентропії.Ентропія - це така термодинамічна функція, диференціал якої дорівнює відношенню нескінченно малого приросту теплоти, яка передається системі, до температури системи. Ентропію позначають літерою S , тоді відповідно до визначення ентропії dS = dQ/T , а розмірність її буде Дж/(моль×К). У довідниках наведені абсолютні значення ентропії за ст.ум. So 298 (зверніть увагу на те, що для ст.ум. у довідниках наводяться значення зміни стандартних ентальпій речовин (DHо 298 ), ане абсолютні єнтальпії, і поясніть цю суттєву різницю). Другий закон термодинаміки, як і перший, також має багато формулювань, наведемо деякі з них:

1.Вічний двигун другого роду не можливий (мається на увазі те, що будь - який двигун(система) не може перетворити в роботу всю теплоту, що підведена до нього, а тому деяка частина цієї теплоти відповідно до другого закону обов’язково буде витрачена на збільшення ентропії в навколишньому середовищі)

2.Неможлива самодовільна передача теплоти від тіла менш нагрітого до тіла більш нагрітого З. Ентропія в ізольованій системі може тільки зростати або оставатися незмінною.

Зупинимось трохи детальніше на останньому формулюванні другого закону. З нього витікає математична форма запису другого закону. Якщо урахувати, що для ізольованих систем dQ=0 (згадаємо, що ізольована система не обмінюється теплотою з навколишнім середовищем), то за

визначенням ентропії (dS = dQ/T), можна записати dS ³ 0 . Остання формула є математичною формою запису другого закону термодинаміки. Словами це можна сформулювати і так, що зміна ентропії в ізольованих системах може бути тільки більшою нуля або рівною нулеві. Дуже важливо запам’ятати, що цей висновок не відноситься до закритих та відкритих систем , а є дійсним тільки для ізольованих. Також важливо зрозуміти і те, що в будь-якій системі без обміну енергією з зовнішнім середовищем самодовільно можуть протікати тільки ті процеси, які супроводжуються зростанням ентропії системи. (відповідь – не може)

Задача N29. Розрахуйте абсолютне значення ентропії заліза при 0 о С. (відповідь – 24,96 Дж / (моль × К)

Подібна задача.Розрахуйте наближено зміну ентропії з нагріванням одного молю води від температури 25 до 50 о С. Ентропія речовин з їх нагріванням зростає. Формулу для розрахунку цієї зміни ентропії можна записати dS = dQ/T або при постійному тиску dS = dQр/T = (Ср×dТ)/T . Візьмемовизначений інтеграл від 298 до Т за останнім рівнянням:

= 298 ò Т (Cp×dT)/T; при цьому можна одержати формули для наближеного та точного розрахунку зміни ентропії. У наближеному розрахунку нехтуємо залежністю Ср від температури і одержимо рівняння S2 – S1 = DS = Cp ln (T/298). Абсолютне значення ентропії речовини при будь -якій температурі (ST ) буде дорівнювати сумі стандартного значення ентропії (So 298 ) та значення зміни ентропії (DS), що зв’язана з нагріванням чи охолодженням речовини. Це можна записати у вигляді рівняння ST = So 298 + Cp ln (T/298). Бажаючі легко можуть одержати рівняння для точного розрахунку зміни ентропії від температури, підставивши під знак інтеграла вираз для залежності Ср від температури (Ср,т = a + bT + cT2 + c’T-2 ), як це було показано в задачі N17. Розрахуємо зміну теплоємності води з її нагріванням, взявши з довідника значення теплоємності рідкої води за ст. ум., за допомогою рівняння для наближеного розрахунку:DS = Cp ln(T/298) = 75,3 ln(323/298) = 6,07 Дж/(моль×К). (відповідь - 6,07 Дж/(моль×К))

Задача N30. Визначте знак та розрахуйте зміну ентропії ентропії одного молю нікелю при його переході з форми a в форму b при температурі 633 К. (відповідь - +0,6 Дж /( моль × К)

Подібна задача.Розрахуйте зміну ентропії при переході 1 молю води з рідкого стану в кристалічний при температурі 0 о С. У задачі N29 з’ясовано, як змінюється ентропія речовини з її нагріванням, а тепер розглянемо, як змінюється ентропія речовини під час фазових перетворень (плавленні, кристалізації, випаровуванні, конденсації, сублімації, алотропних змінах та інших перетвореннях речовини, які протікають при сталих температурах). За визначенням, зміна ентропії dS = dQ /T, де dQ - елементарна кількість теплоти, яку поглинула або вилучила система. Якщо процес нагрівання або охолодження системи протікає при р = const, то dQp = dH, а при переході від нескінченно малих змін до кінцевих змін можемо записатиDS = DH/T, де DH - зміна ентальпії системи в результаті поглинання або вилучення єю теплоти. Тобто зміна ентропії при фазових переходах дорівнює зміні ентальпії системи, що поділена на значення температури фазового переходу. Зміну ентальпії при переході води в лід знайдемо як різницю між стандартною ентальпією утворення води в кристалічному стані та стандартною ентальпією утворення води в рідкому стані, взявши ці дані з довідника: DH = - 291,85 - (- 285,83) = -6,02 кДж/моль. Тепер знайдемо зміну ентропії DS = DH/T= - 6020/273 = -22,05 Дж/(моль×К)(відповідь - -22,05 Дж/(моль×К)

Задача N31. Розрахуйте зміну ентропії в результаті хімічної реакції N2 + + 3H2 = 2NH3 за ст. ум. ? ( відповідь - -152,44 Дж /( моль × К))

Подібна задача.Розрахуйтезміну ентропії в результаті реакції CaO( кр ) + SO3(г) = CaSO4(кр) за ст. ум.. Зміна ентропії в результаті хімічної реакції розраховується як і відповідні зміни ентальпії і теплоємності в результаті хімічної реакції, а саме, ця зміна являє собою різницю між сумою стандартних ентропій продуктів реакції та сумою стандартних ентропій компонентів. У нашому випадку запишемоDSхр = So CaSО4 - (So CaO +So SO3 ) = 106,7 – (39,7 +256,2) = = - 189 Дж/(моль×К)(відповідь - - 189,0 Дж/(моль×К)

Задача N32. Розрахуйте наближено зміну ентропії в результаті хімічної реакції N2 + 3H2 = 2NH3 при температурі - 25 о С.

(відповідь - D So 298 = -196,74 Дж /(моль × К) )

Подібна задача.Розрахуйте наближено зміну ентропії в результаті хімічної реакції

CaO( кр ) + SO3(г) = CaSO4(кр) при 125 о С. Зміна ентропії в результаті хімічної реакції при деякій температурі (DSТ ) може бути розрахована наближено за рівняннямDST = DSo 298 +

+ 298 ò Т (DCp dT)/T = DSo 298 + DCp ln (T/298), яке може бути одержане аналогічно рівнянню для розрахунку абсолютного значення ентропії речовин (див. задачу N23). У цьому рівнянніDSo 298 - зміна ентропії в результаті хімічної реакції за ст.ум.(див задачу N31); DCp – зміна теплоємності в результаті хімічної реакції за ст.ум. (див. задачу N 22). Для одержання рівняння для розрахунку точного значення зміни ентропії в результаті хімічної реакції потрібно урахувати залежність зміни теплоємності в результаті хімічної реакції від температури, як це було зроблено у випадку зміни ентальпії (див. задачу N20). Для розв’язання задачі знайдемо DCp = 99,66– (42,05 + +50,09) = 7,52 Дж/(моль×К), візьмемо DSo 298 = - 189,0 Дж/(моль×К) із задачі N31 (подібна задача) та підставимо ці значення в рівняння для наближеного розрахунку зміни ентропії в результаті хімічної реакції: DST = DSo 298 + DCp ln (T/298) = - 189,0 + 7,52 ln (398/298) = - 186,8 Дж/(моль×К)

(відповідь - - 186,8 Дж/(моль×К))

Задача N33. Знак якої термодинамічної величини визначає можливість самодовільного протікання хімічної реакції за певних умов ? (відповідь - знак зміни ізобарного ( D GT ) чи ізохорного потенціалу ( D FT ) в результаті реакції)

Подібна задача.Як розрахувати термодинамічну можливість самодовільного протікання тих чи інших хімічних процесів? Визначити можливість протікання хімічних процесів за тих чи інших умов можна експериментально, але для цього потрібно проводити дослідження, що часто зв’язане з великими затратами часу та коштів. Цю задачу можна розв’язати шляхом термодинамічних розрахунків, а саме, знаходження знаку зміни ізохорно-ізотермічного (DG)або ізобарно-ізотермічного (DF) потенціалів. Надалі будемо називати їх просто ізобарним та ізохорним потенціалами, відповідно. Частіше хімічні процеси протікають при сталому тиску, а тому буде більш детально розглядається ізобарний потенціал, маючи на увазі те, що висновки відносно нього значною мірою стосуються й ізохорного. Зміна ізобарного потенціалу в результаті будь-якого процесу - це така термодинамічна функція, яка ураховує дві тенденції в самодовільному протіканні процесів у природі. Одна з них - це самодовільне прямування систем до мінімального запасу енергії, а друга - самодовільне прямування систем до максимуму ентропії. Це виражається в математичній формі рівнянням Гіббса

D G = D H - T D S, де DH- зміна ентальпії, DS - зміна ентропії в результаті процесу, T – температура, при якій він протікає. Рівняння Гіббса - одне з найважливіших у термодинаміці. Його обгрунтування, практичне використання в різних галузях знань має виключно велике значення, розв’язуючи, задачі користуємося тільки деякими його можливостями. Зміну ізобарного потенціалу ще називають енергією Гіббса, яка за фізичним змістом являє собою максимально корисну роботу (DG = -Амакс.), яку може виконати система за рахунок DH, а друга частина теплоти (TDS) обов’язково буде розсіяна в навколишньому середовищі, збільшуючи його ентропію. Аналіз рівняння Гіббса дає можливість твердити, що в природі самодовільно протікають лише ті процеси, що супроводжуються зменшенням ізобарного потенціалу системи, тобто це такі, для яких DG< 0. Всі ці, а також багато інших важливих моментів відносно ізобарного потенціалу на високому рівні описані в підручниках. Для розв’язування задач суттєво зрозуміти те, що для хімічних реакцій, які протікають самодовільно або ще можна сказати термодинамічно імовірні, знак зміни ізобарного потенціалу в результаті хімічної реакції менше нуля (DGхр < 0). Це важливе положення термодинаміки можна сформулювати й так. Якщо D Gхр < 0 , то самодовільне протікання термодинамічного процесу імовірно в прямому напрямку (зліва – направо). Якщо D Gхр > 0 , то самодовільне протікання процесу термодинамічно неімовірно в прямому напрямку, але імовірно в зворотному. Випадок, коли DGхр = 0, розглянемо далі в розділі “Хімічна рівновага”. (відповідь – потрібно визначити знак DGхр, якщо він < 0, то така хімічна реакція термодинамічно імовірна)

Задача N34. Напишіть рівняння зв’язку між D Gхр та D Fхр. ( відповідь - D Gхр = D Fхр + D nRT)

Подібна задача.Розрахуйте, наскільки відрізняються між собою DGхр та DFхрпри 25 о С для хімічної реакції С + 0,5 О2 = СО . Рівняння зміни ізобарного та ізохорного потенціалів у результаті хімічних реакцій мають вигляд: D Gхр = D H хр - T D S хр ; D Fхр = D U хр - T D S хр . А рівняння зв’язку між зміною ентальпії (DHхр) та внутрішньої енергії (DUхр) в результаті хімічної реакції таке: D H хр = D U хр + D nRT (див. задачу N 15). Звідси виходить, що при протіканні хімічних реакцій без зміни об’єму, наприклад, у конденсованих фазах (рідких та кристалічних), коли практично об’єм не змінюється або коли нема зміни числа молів газу в результаті реакції (Dn = 0), DGхр = DFхр. Різницю між цими величинами можна записати та розрахувати за рівнянням, яке легко знайтиз наведеного вище: DGхр - DFхр = DnRT =

= 0,5×8,31×298 = 1238 Дж/моль

(відповідь – відрізняються на 1238 Дж/моль)

Задача N35. Розрахуйте можливість самодовільного протікання реакції Cl2 + 2O2 = 2ClO2 за ст. ум. ( відповідь – самодовільно протікати не буде, тому що D Gхр298 > 0, а саме 244,68 кДж / моль )

Подібна задача.Розрахуйте зміну ізобарного потенціалу в результаті хімічної реакції N2 + 2O2 = 2N02 та зробіть висновок відносно самодовільного її протікання за ст.ум.Можна виконати розрахунки двома шляхами. Перший шлях – розрахуємо зміну ентальпії та ентропії в результаті цієї реакції, а потім знайдемо зміну ізобарного потенціалу за рівнянням Гіббса:

D H хр298 = 2DHo N02 - (DHo N2 + 2DHo O2 )= 2×34,19 - (0 + 2×0) = 68,38 кДж/моль

D S хр298 = 2So N02 - (So N2 +2So O2 ) = 2×240,06 - (191,5 + 2×205,04) = -121,46 Дж/(моль×K)

D G хр298 = D H хр298 - TD S хр298 = 68380 – 298(-121,46) = 104575 Дж/моль

Другий шлях – зміну ізобарного потенціалу в результаті реакції розрахуємо як різницю між сумою стандартних ізобарних потенціалів продуктів реакції та сумою стандартних ізобарних потенціалів компонентів, узявши стандартні ізобарні потенціали речовин (DGo ) у довіднику:

D G хр298 = 2 D G o N02 - ( D G o N2 + 2 D G o O2 ) = 2×52,99 - (0 + 2×0) = 105,98 кДж/моль

Можна дати відповідь на це запитання і без розрахунків. За даними довідника, стандартний ізобарний потенціал N02 - додатна величина, а стандартні ізобарні потенціали простих речовин(N2 та O2 ) дорівнюють нулеві, тому і зміна ізобарного потенціалу також величина додатна. (відповідь – реакція за ст. ум. протікати не буде)

Задача N36. Чи може самодовільно протікати ендотермічна хімічна реакція при високій температурі, якщо в результаті цієї реакції зміна ентропії менше нуля ? ( відповідь – ні)

Подібна задача.Збільшується чи зменшується зміна ізобарного потенціалу хімічної реакції з ростом температури? Рівняння, що виражає зміну ізобарного потенціалу в результаті хімічної реакції залежно від температури (DGТ ), при температурі, яка відмінна від стандартної, можемо записати через DHтта DSт (див. задачі N 23 та N 32).

DGТ = DHт-ТDSт = DH298 + 298 ò Т DCp×dT. – Т(DS298 + 298 ò Т (DCp dT)/T)

У це рівняння входять дві складові частини: ентальпійний (298 ò Т DCp×dT) та ентропійний (298 ò Т (DCp dT)/T) інтеграли, які можна взяти і точно, і наближено. Якщо нехтувати залежністю теплоємності від температури і взяти ці інтеграли, то одержимо рівняння для наближеного розрахунку зміни ізобарного потенціалу в результаті хімічної реакції залежно від температури.D GТ = D H298 + D Cp (T - 298) . – Т( D S298 + D Cp ln (T/298) ).

Це рівняння можна ще спростити, припустивши, що зміна ентальпії та ентропії в результаті реакції зовсім не залежать від температури ( DCp = 0).Тоді отримаємо рівняння D GТ = D H298 - – Т D S298. Із цього рівняння видно, що у випадку, коли DS298 < 0, імовірність самодовільного протікання реакції зі збільшенням температури все меншає, бо DGТ стає все більш додатною величиною. Тобто ентропійний фактор не сприяє протіканню реакції. А у випадку, коли реакція ендотермічна (DH298 > 0), знак DGТ взагалі не може бути від’ємним при будь-якій температурі, а значить така реакція неімовірна за будь-яких умов. Частіше реакції протікають самодовільно за рахунок ентальпійного фактора (DH298 < 0), тобто екзотермічні реакції. Але часто бувають і такі випадки, коли ендотермічна реакція не протікає при низьких температурах (DGТ > 0) та протікає самодовільно при високих за рахунок ентропійного фактора (DS298 > 0). Такий же аналіз рівняння Гіббса можна здійснити за допомогою рисунків, які наведені нижче. Якщо припустити, що зміна ентальпії та ентропії в результаті хімічних реакцій не залежить від температури, то можна розглянути чотири варіанти зміни ізобарного потенціалу від температури і дати відповідний прогноз самодовільного протікання цих реакцій в залежності від температури.

Перший варіант: DH298 < 0; DS298 > 0 - хімічна реакція буде протікати самодовільно при будь-якій температурі, тому що при будь-якій температурі зміна ізобарного потенціалу в результаті реакції менше нуля (DG< 0).

+ ТDS


Т

DH

- DG

Другий варіант: DH298 > 0; DS298 < 0 - хімічна реакціяне буде протікати самодовільно при будь-якій температурі, тому що при будь-якій температурі зміна ізобарного потенціалу в результаті реакції більше нуля (DG> 0). Тобто самодовільне протікання таких хімічних реакцій є термодинамічно неімовірним.


+ DG

DH


Т

ТDS

-

Третій варіант: DH298 > 0; DS298 > 0 - хімічна реакціяне буде протікати самодовільно при низькій температурі, а при високій - протікає самодовільно. Тобто самодовільне протікання таких хімічних реакцій є термодинамічно неімовірним від 0 до деякої температури Тx (DG> 0), а вище від температури Тx така реакція буде протікати самодовільно (DG< 0).

+ ТDS

DH


Тx Т

- DG

Четвертий варіант: DH298 < 0; DS298 < 0 - хімічна реакціяне буде протікати самодовільно при високій температурі, а при низькій - протікає самодовільно. Тобто самодовільне протікання таких хімічних реакцій є термодинамічно імовірним від 0 до деякої температури Тx (DG< 0), а вище від температури Тx така реакція не буде протікати самодовільно (DG> 0).


+ DG


Т

DH

- Тx ТDS

(відповідь – може зростати та зменшуватись залежно від знаку зміни ентропії в результаті реакції)

Потрібно застережити, що розглянуті вище чотири прикладі дуже спрощені. На практиці залежність зміни ентальпії, ентропії та ізобарного потенціалу в результаті хімічних реакцій від температури не є лінійними функціями, а тому такий аналіз може ускладнюватися. Деякою мірою більш складний приклад наведений в наступній задачі.

Задача N37. На рисунку наведена за-

лежність зміни термодинамічних +

параметрів деякої реакції від темпера- T DS

тури. При якій температурі ця реакція

термодинамічно імовірна? ( відповідь-

при Т > Т1 ) DH


- T1 T

Подібна задача. Який знак має зміна термодинамічних параметрів (DH, DS , DCp і DG) в результаті хімічної реакції на інтервалах температури від 0 до Т1 і від Т1 та вище від неї відповідно до рисунку, що наведений в задачі N 40? (Відповідь – на інтервалі 0 - Т1 (DH > 0, DS > 0 , DCp > 0 і DG > 0), а на інтервалі від Т1 та вище від неї (DH > 0, DS > 0 , DCp < 0 і DG < 0).

Задача N38. Розрахуйте наближено (припустивши, що зміна ентальпії та ентропії в результаті реакції не залежить від температури) температуру, вище від якої реакція CaCO3 =CaO+ CO2 буде протікати самодовільно. (відповідь – 1114 K або 841 о С)

Подібна задача.Розрахуйте наближено ( DCp = DCp,298 = const), в якому інтервалі температури буде протікати самодовільно реакція Hg( р ) + 0,5 O2(г) = HgO(кр). За вже відомим рівнянням розрахуємо зміну ентальпії (DH298 = -151,2 кДж/моль), ентропії (DS298 = -240,2 Дж/(моль×К)) та теплоємності ( DCp,298 = 10,3 Дж/(моль×К)) в результаті цієї реакції і підставимо ці дані в рівняння для наближеного розрахунку (див. задачу N 33) DGТ = DH298 + DCp(T - 298). – Т(DS298 + DCp ln (T/298)). .Розрахуємо DGТ для декількох температур і занесемо дані в таблицю, а для прикладу наведемо розрахунок при 500 К:DG 500 = -150200 + 10,3(500 - 298). – 500(-204,2 + 10,3 Ln (500/298)) = -49684 Дж/моль;

T,o C 25 227 502 527 727

T, K 298 500 775 800 1000

DGТ ,кДж/моль -90,4 -49,7 0,0 9,2 47,8

Із даних таблиці, видно, що зі збільшенням температури DGТ стає все менш від’ємною величиною і при температурі вище від 775 К реакція самодовільно протікати не буде в прямому напрямку, а, навпаки, буде самодовільно протікати зворотна реакція розпаду оксиду ртуті на кисень та ртуть. На цьому прикладі бачимо, що ентропійний фактор (DS298 = -240,2 Дж/(моль×К) < 0) не сприяє самодовільному протіканню реакції при високих температурах у прямому напрямку. (відповідь – реакція в інтервалі температури до 775 К буде протікати самодовільно, а при температурі вищій від 775 К (502 o C) самодовільно протікати не буде)

Таку саму задачу можна розв’язати простіше, але й з ще більшою похибкою, припустивши, що DCp = 0.Тоді за рівнянням Гіббса DGТ = DH298 – ТDS298 можна розрахувати температуру, при якій DGТ = 0, а вище від якої DGТ >0. Тоді 0 = DH298 – ТDS298 = -150200 – Т(-240,2). Знайдене таким чином значення температури Т = 150200/240,2 = 625 K = 352 o C аж на 150 К відрізняється від попереднього результату.

Хімічна рівновага

Задача N39. Як відносяться між собою швидкість прямої ( v пр ) та швидкість зворотної( v зв ) реакцій в стані рівноваги (відповідь- v пр = v зв )

Подібна задача. Дати визначення та схематично пояснити стан хімічної рівноваги. Хімічна рівновага -це такий стан системи, коли швидкість прямої реакції (v пр )дорівнює швидкості зворотної (v зв )реакції. Хай протікає деяка хімічна реакція aA + bB = eE + fF

Спочатку, а саме, коли ще реакція не почалась, концентрації вихідних речовин А (СА ) та В (СВ ) будуть великими, а концентрації продуктів реакції Е (СE ) та F (СF ) - дорівнювати нулеві.Швидкості прямої та зворотної реакцій можна виразити, використавши закон діючих мас, так:

v пр = K1 С a А С b В ; v зв = K2 С e E С f F , де K1 та K2 - константи швидкості прямої та зворотної реакцій, відповідно. Звідси виходить, що на початку реакції швидкість прямої реакції буде мати якесь певне значення, відмінне від нуля, а швидкість зворотної реакції буде дорівнювати нулеві, бо концентрації речовин Е та F при цьому дорівнюють нулеві. З часом швидкість прямої реакції буде зменшуватись, бо зменшуються з протіканням реакції концентрації речовин А та В. Швидкість зворотної реакції зростає, тому що будуть збільшуватись концентрації Е та F. Стан рівноваги досягається тоді, коли швидкості прямої та зворотної реакцій стануть рівними. Зверніть увагу на те, що в стані рівноваги швидкості прямої та зворотної реакції не дорівнюють нулеві, це, так званий, динамічний стан рівноваги. Певному стану рівноваги відповідає певне співвідношення концентрацій вихідних речовин та продуктів реакції. Зміна будь-яких факторів, наприклад, температури або тиску, миттєво впливає на стан рівноваги і призводить з часом до якогось іншого співвідношення концентрацій вихідних речовин та продуктів реакції. Потрібно також пам’ятати, що тривалість досягнення стану рівноваги в різних хімічних реакціях може значно відрізнятись. Є такі хімічні реакції, в яких рівновага наступає миттєво, а є й такі, що прямують до цього стану мільйони років. Методи термодинаміки не дають можливості розрахувати час, що потрібний для досягнення системою стану рівноваги, але вони дозволяють знайти те місце, яке займе система в стані рівноваги на шляху від початкового до кінцевого стану, тобто знайти рівноважні концентрації її вихідних речовин та продуктів у стані рівноваги. За допомогою термодинаміки є можливість розрахувати ступінь перетворення вихідних речовин у продукти реакції за певних умов або розрахувати константи рівноваги Кр чи Кс. (відповідь - див. вищевикладений текст)

Задача N40. В якому напрямку буде зміщуватись рівновага реакції S(кр) + O2(г) = SO2(г) зі збільшенням температури та тиску ? ( відповідь – з підвищенням температури - ліворуч, а тиск не буде впливати на стан рівноваги)

Подібна задача. Як впливає температура та тиск на рівновагу реакції N2 + 3H2 = 2NH3 ? Вплив температури та тиску на рівновагу в хімічних системах визначає принцип Ле-Шательє, який можна сформулювати так.Якщо на систему, яка перебуває в стані рівноваги, подіяти будь - яким фактором (змінити температуру або тиск), то рівновага в системі зміниться таким чином, що дія цього фактора зменшиться. Для визначення впливу температури на стан рівноваги потрібно розрахувати зміну ентальпії в результаті реакції, тобто визначити екзо- чи ендотермічна ця реакція. Розрахунок (подібна задача N12) дає результат: DH298 = - 91,9 кДж/моль,тобто ця реакція екзотермічна при протіканні її праворуч та ендотермічна - ліворуч. З підвищенням температури рівновага в системі зміститься ліворуч, у бік ендотермічної реакції, і таким чином частина підведеної теплоти поглинеться, що буде протидіяти зростанню температури в системі. Зменшення температури (охолодження) компонентів реакції призведе до зміщення рівноваги праворуч, тобто до зростання рівноважної концентрації аміаку. Вплив підвищення температури на стан рівноваги в ендотермічних реакціях (DH298 > 0) буде протилежним.Зі збільшенням загального тиску в системі рівновага буде зміщуватись у той бік, де менше кількість молів газу, що буде сприяти йього зниженню в системі, тому що чим менше кількість молів газу в одиниці об’єму, тим менше тиск. У нашому випадку ліворуч 3 молі газу, а праворуч 2 (Dn = 2 – 3 = -1), тому підвищення загального тиску призведе до зміщення рівноваги праворуч, тобто до збільшення концентрації (парціального тиску) аміаку в цій газовій суміші. Для реакцій, в яких Dn > 0, збільшення тиску буде сприяти зміщенню рівноваги ліворуч, а при Dn = 0 він не буде впливати на стан рівноваги реакції. Принцип Ле-Шательє дає змогу якісно оцінити, яким чином впливає на стан рівноваги температура та тиск, тобто прогнозувати, за яких умов можна досягнути максимального виходу продуктів хімічної реакції. Так, наприклад, для досягнення високого виходу аміаку його синтез з водню та азоту слід проводити за умови великого тиску та низької температури. (відповідь – підвищення температури зміщує рівновагу реакції ліворуч, а підвищення тиску - праворуч)

Задача N41. В якому напрямку буде зміщуватись рівновага реакції, для якої D H298 = D U298 < 0, зі зменшенням температури та тиску ? ( відповідь – зі зменшенням температури - праворуч, а тиск не буде впливати на стан рівноваги) Подібна задача. Дів задачу N40.

Задача N42. В якому напрямку буде зміщуватись рівновага реакції Fe2 O3 + 3CO = 2Fe + 3CO2 , якщо до системи додати один з компонентів реакції ? (відповідь – додавання Fe2 O3 та Fe не буде впливати на стан рівноваги, додавання CO буде сприяти зміщенню рівноваги в системі праворуч, а додавання CO2 - ліворуч)

Подібна задача. Як буде впливати на стан рівноваги добавлення або відведення окремих компонентів у системі CaCO3(кр) = CaO(кр) + CO2(г) ? Уявимо, що ця система знаходиться в циліндрі з поршнем при незмінній температурі. Якщо натиснути на поршень, то це призведе до зменшення об’єму і збільшення тиску в системі, на що вона відреагує початком зворотної реакції утворення CaCO3 з CaO та CO2 . У результаті цієї реакції кількість молів газоподібного CO2 буде зменшуватись, і тиск в системі також зменшиться. Процес буде продовжуватись до досягнення системою стану рівноваги, тобто до досягнення початкового тиску в системі, який повністю обумовлений тиском CO2 , тому що це єдиний газ у системі, і загальний тиск у ній буде рівним парціальному тиску CO2 . Якщо замість натиснення на поршень збільшити тиск у системі доданням CO2 з якоїсь іншої ємності, то реакція системи буде такою ж. Один моль газу займає об’єм приблизно в 1000 разів більший, ніж речовина в конденсованому (рідкому або кристалічному) стані, а тому додання до системи або утворення в результаті реакції в системі речовин у рідкому або кристалічному стані мало змінює об’єм системи і практично не впливає на стан рівноваги. (відповідь – додання або відведення CO2 буде впливати на стан рівноваги цієї системи, а зміна кількості молів кристалічних CaCO3 та CaO не буде впливати на стан рівноваги в системі)

Задача N43. Які значення змін ізобарного та ізохорного потенціалів свідчать про те, що закрита система досягла стану рівноваги ? (відповідь – при р = const D G = 0 , а при v = const D F= 0)

Подібна задача.Які умови повинні виконуватись для установлення стану рівноваги в закритих системах? Як було зазначено вище, принцип Ле-Шателье лиш якісно описує стан хімічної рівноваги, а для її кількісного опису потрібно вивчити низку важливих закономірностей та понять. Стан рівноваги в будь-яких системах, зокрема і хімічних, описують рівняння Гіббса-Гельмгольця. Ці рівняння є основою багатьох теоретичних викладок, що відносяться до стану рівноваги. Одне з них має вигляд dF = -SdT – pdV. Прокоментувати це рівняння стисло можна так: якщо в закритій системі v = const та Т = const (dV=0 та dT=0), то ніякі процеси в ній не можливі (dF = 0). Із цього рівняння також витікає, що самодовільний ізотермічний процес при постійному об’ємі протікає в напрямку зменшення ізохорного потенціалу. Система досягає стану рівноваги при якомусь мінімально можливому значенні ізохорного потенціалу (F). Умовою рівноваги є dF = 0. Самодовільні ізотермічні процеси при постійному тиску протікають у напрямку зменшення ізобарного потенціалу системи (G), що описує інше рівняння Гіббса-ГельмгольцяdG = -SdT + vdP. Воно також свідчить про те, що при Р = const та Т = const (dР=0 та dT=0) закрита система знаходиться в стані рівноваги (dG=0). (Відповідь - незмінність об’єму, тиску і температури)

Задача N44. Чи завжди система, прямуючи до стану рівноваги, обов язково досягає кінцевого стану ? (відповідь – ні, система може досягти стану рівноваги на шляху від початкового до кінцевого стану в деякому проміжному стані, якому відповідає нульове значення зміни ізобарного потенціалу ( D G = 0 ))

Подібна задача.Які варіанти прямування систем до стану рівноваги можливі? Термодинаміка завжди оперує поняттями початковій (1) та кінцевий (2) стан системи, позначимо значення ізобарних потенціалів у цих станах системи через G1 та G2 , відповідно. Розглянемо схематично три можливих варіанти прямування систем до стану рівноваги.

Перший варіант. Ізобарний потенціал стану 1 G

більше ізобарного потенціалу стану 2 (G1 > G2 ), тоді

G2 - G1 = DG < 0 - система самодовільно G1

буде прямувати до стану 2.Якщо це відноситься до

хімічних реакцій (систем), то висловлюються так – реакція

протікає до кінця або рівновага реакції зміщена праворуч.

G2


Стан 1 Стан 2

Другий варіант. Ізобарний потенціал стану 1 менше G G2

ізобарного потенціалу стану 2 (G1 < G2 ), тоді

G2 - G1 = DG > 0 - система самодовільно

не буде прямувати до стану 2. Відносно хімічних реакцій

висловлюються так – реакція не протікає, або реакція

термодинамічно не можлива, або рівновага реакції G1

повністю зміщена ліворуч.

Стан 1 Стан 2

Третій варіант. На шляху переходу системи з G

стану 1 в стан 2 є мінімум ізобарного потенціалу,

який знаходиться десь на його середині. Система G1 G2

буде прямувати якраз до цього проміжного стану і,

досягнувши його, буде перебувати в стані рівноваги.

Відносно хімічних реакцій часто кажуть - реакція

прямує до стану рівноваги, маючи на увазі, що реакція

не протікає до кінця. Стан 1 Стан 2

Задача N45. Чому дорівнює стандартний хімічний потенціал чистої речовини ? (відповідь – стандартний хімічний потенціал чистої речовини дорівнює стандартному ізобарному потенціалу цієї речовини)

Подібна задача. Який фізичний зміст поняття хімічний потенціал і які задачі розв’язуються за допомогою цієї термодинамічної функції? Ця термодинамічна функція потрібна для того, щоб з’явилась можливість термодинамічного опису не тільки ізольованих та закритих систем, але і систем відкритих. За допомогою цієї функції є можливість урахувати обмін системи масою (речовинами) з навколишнім середовищем. Хімічний потенціал – це термодинамічна функція, яка ураховує зміну ізобарного потенціалу системи при доданні до неї одного молю якогось із компонентів системи при р = const, Т = const та незмінності кількості молів всіх інших компонентів системи. У підручниках він часто позначається буквоюm . За визначенням ,хімічний потенціал i-го компонента системи можна записати у вигляді рівняння mi = (dG/dni )P,T , n1 ,n2 ,….ni-1, де G – ізобарний потенціал системі, n i - кількість молів i-го компонента. Стандартний хімічний потенціал чистої речовини (mо i ) дорівнює стандартному ізобарному потенціалу цієї речовини (GO i). Значення хімічного потенціалу практично ніколи не розраховують, ця термодинамічна функція як проміжна використовується в різноманітних теоретичних міркуваннях для опису відкритих систем.

Задача N46. Яка ознака стану рівноваги у відкритій системі ? ( відповідь - dp = dT = dn =0)

Подібна задача. Які ознаки рівноваги в ізольованих, закритих та відкритих системах? Для ізольованих систем ознакою рівноваги є незмінність ентропії (dS =0). Для закритих систем при Р=const, як вже було обмірковано в задачі N 35, ознакою рівноваги є незмінність температури (Т = const), DG = 0 .Для відкритих систем при р= const з теорії витікає рівняння умови рівновагиdG = -SdT + Vdp + Smi dni = 0. Це розуміємо так, що для відкритих систем, крім сталої температури (dТ = 0) та тиску (dp = 0), потрібна незмінність кількості молів всіх компонентів системи (dni = 0), і тільки тоді система досягне стану рівноваги. (відповідь – для ізольованих – dS =0; для закритих – dp =dT = 0; для відкритих - dp = dT = dn = 0)

Задача N47. Яка розмірність константи рівноваги для реакції CaCO3(кр) = CaO(кр) + CO2(г) в СІ (система інтернаціональна) ?

( відповідь - [ Па ] )

Подібна задача. Який фізичний зміст константи рівноваги хімічних реакцій? Хімічна рівновага - це такий стан системи, коли швидкість прямої реакції (v пр )дорівнює швидкості зворотної (v зв )реакції. Пояснимо це на прикладі деякої хімічної реакції aA + bB = eE + fF

Швидкості прямої та зворотної реакцій, використавши закон діючих мас, можна виразити так

v пр = K1 С a А С b В ; v зв = K2 С e E С f F , де K1 та K2 - константи швидкості прямої та зворотної реакцій, відповідно, СА ; СВ ; СE та СF - концентрації речовин A;B;E таF, відповідно. У стані рівноваги v пр = v зв , тоді можна записатиK1 С a А С b В = K2 С e E С f F , звідки випливає, що

K1 / K2 = ( С e E С f F )/( С a А С b В ) = Kс. Величину називають константою рівноваги, що виражена через рівноважні концентрації , вона являє собою відношення констант швидкості прямої (K1 ) та зворотної (K2 ) реакцій. Фізичний зміст K1 та K2 детальніше пояснимо в розділі “Хімічна кінетика”, а якщо стисло, то це коефіцієнти пропорційності в рівнянні закону діючих мас. Індекс с біля константи рівноваги означає, що константа виражена через рівноважні концентрації речовин. За аналогією можна одержати вираз константи рівноваги, що виражена через рівноважні парціальні тиски компонентів реакції , яку позначають літерою Kр. Kр = K1 / K2 = ( Р e E Р f F )/( Р a А Р b В ). Потрібно особливо підкреслити, що у вираз константи рівноваги не входять парціальні тиски рідин та кристалічних речовин, а тільки - газоподібних речовин. Наприклад, напишемо вираз для константи рівноваги реакції H2( г ) + J2(кр) = 2HJ(г) :Kр = P 2 HJ /P H2 = Па 2 /Па = Па; її розмірність – [Па] , або [атм] , якщо рівноважні парціальні тиски виражати в атм.(відповідь – константа рівноваги являє собою відношення констант швидкості прямої та зворотної реакцій і визначається через значення рівноважних концентрацій(Кс) або рівноважних парціальних тисків компонентів реакції (Кр))

Задача N48. Чи будуть рівними константи рівноваги та для реакції N2 + 2O2 = 2NO2 ? ( відповідь – ні, Kр < Kс)

Подібна задача.Який зв’язок між константами рівноваги хімічних реакцій, що виражені через рівноважні парціальні тиски ( ), та констант рівноваги, що виражені через рівноважні концентрації ( )? Із задачі N47 витікає , щоKр = ( Р e E Р f F )/( Р a А Р b В ), а = ( С e E С f F )/( С a А С b В ). Із рівняння Менделеєва-Клапейрона pV = nRT витікає, що р= n/V(RT) = cRT, деc – концентрація (кількість молів газу в одиниці об’єму). Замінимо р на с у виразі для і одержимо

Kр = ( Р e E Р f F )/( Р a А Р b В ) = ( С e E С f F )/( С a А С b В ) (RT) (e+ f – a - b) = Kс (RT) D n , деD n - зміна кількості молів газоподібних речовин у результаті реакції. (відповідь – цей зв’язок ілюструє рівняння Kр = Kс (RT) D n )

Задача N49. Написати рівняння зв’язку між зміною ізобарного потенціалу в результаті хімічної реакції ( D G ) та константою рівноваги цієї реакції ( Kp ). ( відповідь - D G = - RT lnKp)

Подібна задача.Як термодинамічним шляхом розрахувати константу рівноваги? Константа рівноваги за фізичним змістом являє собою відношення констант швидкостей прямої та зворотної реакцій (див. задачу N47). Вище визначили, а тепер розглянемо інші аспекти поняття - константа рівноваги. Візьмемо якийсь простий схематичний приклад, в якому з газу А утворюється газ В, що можна записати у вигляді хімічного рівняння А(г) = В(г) . Запишемо константу рівноваги Кр через рівноважні парціальні тиски газів А (РА ) та В (РВ ): Кр = РВ / РА . Тим часом відзначимо, що для цього простого прикладу, який розглядається, загальний тиск (Р) у системі за будь-яких умов буде дорівнювати сумі парціальних тисків газів А та В, тому що з одного молю газоподібної вихідної речовини А утворюється один моль продукту реакції – газоподібної речовини В. Припустимо, що початковий парціальний тиск газу А дорівнював 1 атм і реакція пройшла повністю,тобто весь газ А перетворився в В. Тоді рівноважний парціальний тиск Рв = 1 атм, а рівноважний парціальний тиск РА = 0 атм. Вираз константи рівноваги для цього випадку потрібно записати Кр = 1/0, що з погляду математики не допустимо. Напевно, дуже мала, але якась кількість газу А в суміші залишилась (РА 0), тому константа рівноваги буде мати занадто велике значення, але < . Якщо реакція взагалі не протікає, то РА = 1атм, а РВ = 0 атм, тоді константа рівноваги Кр = 0/1 = 0, що також мало імовірно. Тому константа рівноваги може мати значення: 0 < Кр < . Припустимо, що значення константи рівноваги в нашому випадку буде, рівне наприклад, 1. Це означає, що 50% газу А перетворилось у газ В в стані рівноваги (РВ = 0,5 атм та РА = 0,5 атм), тобто константа рівноваги дає інформацію про те, який відрізок на шляху від початкового до кінцевого стану пройшла система, досягнувши стану рівноваги. Інакше кажучи, константа рівноваги дає кількісну характеристику ступеня перетворення початкових речовин у кінцеві в стані рівноваги. Це типова задача, яка розв’язується на практиці найчастіше. Забігаючи трохи вперед, зауважимо, що термодинамічним шляхом можливо розрахувати константу рівноваги при будь-якій температурі, а це дає можливість теоретичного прогнозу та розрахунку ступеню перетворення початкових речовин в ті чи інші продукти за тих чи інших умов. Можливість такого теоретичного розрахунку константи рівноваги хімічної реакції (Кр) через зміну ізобарного потенціалу в результаті хімічної реакції (DG) дає рівняння ізотерми . Розглянемо рівняння ізотерми дещо в спрощеному виглядібез виводу, але зауважимо, що для його теоретичного обгрунтування використовуються такі поняття, як термодинамічні потенціали, рівняння Гіббса-Гельмгольця і хімічний потенціал. Найбільш прийнятною формою рівняння ізотерми для задач, які розв’язуються в цьому скороченому курсі, є рівняння вигляду D GT = - RT ln KpT . Індекс Т біля Kp та DG означає, що можна розрахувати константу рівноваги хімічної реакції при будь-якій температурі (Кр,т) за зміною ізобарного потенціалу в результаті хімічної реакції при тій самій температурі (DGТ ). Методика розрахункуDGТ розглядалась у задачі N38. (відповідь – за допомогою рівняння ізотерми)

Задача N50. Розрахувати константу рівноваги реакції N2 +3H2 = 2NH3 за ст. ум. (відповідь – 6,03 × 105 атм-2 )

Подібна задача.Чи залежать значення і розмірність константи рівноваги хімічних реакцій від вигляду рівняння, що описує цей процес? Залежать, тому що розмірність визначається значенням і знаком Dn, а значення константи залежить від величини і знаку DG. І взагалі, значення і розмірність константи рівноваги завжди наводяться в технічній літературі тільки поряд з рівнянням реакції, до якої константа відноситься. Це добре ілюструють такі два приклади.

Перший приклад : 2SO2 + O2 = 2SO3 D n = 2 – (2 + 1) = -1 [Kp] = атм -1

= P 2 SO3 / (P2 SO2 P O2 ) = атм 2 / (атм2 × атм) = атм-1 ;

D G хр298 = 2 D G o SO3 -(2 D G o SO2 +D G o O2 )=2(-371,17)–(2(-300,21)+0,0) = =- 141,92 кДж / моль ; ln Kp 298 = - D G 298 / RT = = -(-141920)/ (8,31× 298); Kp 298 = 7,75× 1024 атм-1 ;

Другий приклад : SO2 + 0,5 O2 = SO3 , D n = 1 – (1 + 0,5) = -0,5 [Kp] = атм - 0,5

= P SO3 / (P SO2 P0,5 O2 ) = атм / (атм × атм 0,5 ) = атм- 0,5 ;

D G хр298 = D G o SO3 - ( D G o SO2 + 0,5D G o O2 ) =

= (-371,17) – ((-300,21) + 0,5 × 0,0) = - 70,96 кДж / моль ;

ln Kp 298 = - D G 298 / RT = -(-70960)/ (8,31× 298);

Kp 298 = 2,78× 1012 атм- 0,5 ;

Із цих прикладів видно, що розмірність і значення константи рівноваги, хоч і записані для одного і того самого процесу, але залежать від вигляду рівняння. (відповідь – так, значення і розмірність константи рівноваги залежать від вигляду хімічного рівняння, яке описує цей процес)

Задача N 51. Розрахувати наближено (за величинами D H298 і D S298 ), вище від якої температури СаСО3 буде самодовільно розпадатись на СаО та СО2 за реакцією СаСО3 =СаО+СО2 .(відповідь – 1114 K =841 о С)

Подібна задача.Розрахувати наближено, який тиск буде в герметично закритій посудині з крейдою (СаСО3 ), якщо нагріти її до температури 900 о С. Якщо в цій посудині нема нічого, крім крейди, то тиск (Р) у ній буде повністю обумовлений рівноважним парціальним тиском вуглекислого газу (Р= Р СО2 ) , який є продуктом реакції дисоціації крейди на негашене вапно (СаО) та вуглекислий газ (СО2 ) за реакцією СаСО3 = СаО + СО2 . Ураховуючи, що СаСО3 та СаО - кристалічні речовини, константа рівноваги для цієї реакції, що виражена через рівноважні парціальні тиски, може бути записана Kp = Р СО2 . Тоді тиск при 900 о С (1173 К) можна виразити такР СО2 ,1173 = Kp,1173. За допомогою рівняння ізотерми знайдемо константу рівноваги за значенням D G 1173 наближено, тобто не ураховуючи залежність D H та D S, від температури та приймаючи їх рівними D H298 і D S298 , відповідно. Рівняння розрахунку зміни ізобарного потенціалу в результаті реакції буде мати виглядD GT = D H298 T D S298 . Тоді D G1173 = D H298 – 1173 ×D S298 = 178230 - 1173 × 160,02 = -9473 Дж / моль Підставимо ці дані в рівняння ізотермиLn Kp1173 = - D G1173 /RT = = -(-9473) /(8,31 × 1173) = 3,83; Kp 1173 = Р СО2 ,1173 = Р = 45,8 атм.

(відповідь – тиск в посудині буде рівним наближено 45,8 атм при температурі 900 о С)

Задача N52. Визначити за допомогою D n, значення якої константи Kp чи Kc більше для реакції MgO + CO2 = MgCO3 . (відповідь– Kc > Kp)

Подібна задача.Розрахувати Kp та Kc в атм та Па за ст.ум.для реакціїMgO + CO2 = MgCO3 . Розрахунок проведемо за допомогою рівняння ізотерми, для чого спочатку знайдемо зміну ізобарного потенціалу в результаті цієї реакції: D G298 = D G o MgCO3 - ( D G o MgO+ + D G o CO2 ) = -1012,15 – (-569,27 + (-394,37)) = -48,51 Дж / моль ;

Ln Kp298 = - D G298 /RT = -(-48510)/(8,3 × 1298) = 19,59;

Kp298 = 3,2 × 108 атм-1 . Для розрахунку Кр в Па використаємо формулу, яка дає можливість перевести Kp(атм) в Kp(Па) і яку наводимо без виведення:

Kp(Па) = Kp(атм) (1,013 × 105 ) D n = 3,2 × 108 (1,013 × 105 ) -1 = 3159 Па-1 ;

Тепер використаємо рівняння зв’язку між Кр та Кс (див. задачу N48) для розрахунку Кс

Kр = Kс (RT) D n , Kс = Kр/ (RT) D n = 3159/(8,31 × 298) -1 = 7,8 ×106 ( моль / м3 )-1 .

(відповідь - Kp( атм ) = 3,2 × 108 атм-1 ; Kp(Па) =3159 Па-1 ;Kс(Па) = 7,8 ×106 ( моль / м3 )-1 )

Задача N53. Розрахувати рівноважні парціальні тиски газів В та С для хімічної реакції А(кр) + В(г) = С(г) , для якої за ст.ум. K р = 30. (відповідь – РВ =0,033 атм, а РС = 0,967атм) Подібна задача.Див.задачі NN 49 - 52.

Задача N54. Розрахувати наближено, вище від якої температури CuO буде термодинамічно не стійким та почне дисоціювати на Cu та О2 . (відповідь–вище від 1747 К=1474 о С) Подібна задача.Див.задачі NN49 - 52.

Задача N55. Розрахувати, при якій температурі рівноважний парціальний тиск кисню над CuO досягне 1 атм. (відповідь - 1747 К = 1474 о С) Подібна задача. Див. задачі NN 49 - 52.

Задача N56. Розрахувати за допомогою рівняння ізобари константу рівноваги деякої реакції при 100 о С, якщо Kp298 = 1, а D H298 = - 50 кДж / моль. ( відповідь – Kp373 = 1,73 × 10-2 )

Подібна задача. Які рівняння виражають зв’язок констант рівноваги хімічних реакцій Кр та Кс з температурою та тепловим ефектом реакції? Такий зв’язок описують рівняння ізобари та ізохори хімічних реакцій. Рівняння ізотерми, ізобари та ізохори хімічних реакцій описують вплив тиску та температури на стан рівноваги кількісно. Вплив тиску та температури на стан рівноваги розглянуто, виходячи з принципу Ле-Шательє (див. задачу N40). Але цей принцип дає можливість виявити тільки якісний вплив, а саме, в який бік буде зміщуватись рівновага реакцій зі зміною температури та тиску, а на скільки вона зміститься, з його допомогою визначити неможливо. Рівняння ізобари та ізохори мають вигляд: dlnKp/dT = DH/(RT2 ) та dlnKс/dT = DU/(RT2 ), де Kp - константа рівноваги, що виражена через рівноважні парціальні тиски компонентів реакції, Kс- константа рівноваги, що виражена через рівноважні концентрації компонентів реакції; DH та DU - зміна ентальпії та внутрішньої енергії в результаті хімічних реакцій, відповідно. Розглянемо деякі властивості рівняння ізобари, відмітивши, що ті самі властивості притаманні рівнянню ізохори. Для цього перейдемо від диференціальної форми рівняння до інтегральної, взявши невизначений інтеграл, а також зробимо припущення, що DH не залежить від температури. Тоді будемо мати

dlnKp = DH/R dT /T2 ; lnKp = - DH/R× 1/T + B, де B - константа інтегрування.

Останнє рівняння являє собою рівняння прямої лінії, що не проходить через початок координат:

y = kx + b. деy = lnKp, k = - DH/R,x = 1/T . Той факт, що є можливість виразити як лінійну залежність константи рівноваги реакції (lnKp) від температури (1/T), має велике практичне значення. Так, якщо відомі тільки дві константи рівноваги при різних температурах, то, використовуючи цю залежність, можна знайти константи рівноваги при будь - яких інших температурах. Також можна знайти тепловий ефект хімічної реакції за двома значеннями констант рівноваги або за кутом нахилу (a ) прямої в координатах

lnKp = f(1/T), tg a = k = - D H/R .

Залежність Kp = f( T) являє собою криву лінію, тоді як залежність LnKp = f( 1/T) прямолінійна, причому tga має протилежні знаки для екзотермічних та ендотермічних реакцій, що ілюструють рисунки які наведені нижче.Коли узяти визначений інтеграл, то можна одержати рівняння ізобари в диференціальній формі, яке часто використовують на практиці:lnKp,298 lnKp,T dlnKp = DH/R 298 T dT /T2 ;

lnKp,T = lnKp,298 + DH/R (1/298 - 1/T). Останнє рівняння наочно ілюструє вплив температури на константу рівноваги. Так, для екзотермічної хімічної реакції (DH < 0) зростання температури призведе до зменшення константи рівноваги, а для ендотермічної (DH > 0), навпаки, до її збільшення. Тобто рівновага для екзотермічних хімічних реакцій з підвищенням температури буде зміщуватись ліворуч, а ендотермічних - праворуч. Це установлює і принцип Ле-Шательє, але, як уже наголошувалось, тільки в якісному плані. (відповідь – рівняння ізобари та ізохори хімічних реакцій)

Kp DH>0 lnKp

DH < 0

DH < 0 DH > 0

T 1/T

Задача N57. Як вплине підвищення температури на стан рівноваги і константу рівноваги реакції 2SO2 + O2 = 2SO3 ? ( відповідь – рівновага реакції зміститься ліворуч, а константа рівноваги зменшиться)

Подібна задача. Як вплине підвищення температури та тиску на стан рівноваги і константу рівноваги в системі N2 + 3H2 = 2NH3 ? Ця реакція екзотермічна, а тому її рівновага буде зміщуватись ліворуч з підвищенням температури. З тієї ж причини константа рівноваги буде зменшуватись з підвищенням температури. Підвищення тиску призведе до зміщення рівноваги праворуч, у бік меншої кількості молів газу, а константа рівноваги не зміниться. Загальний тиск або парціальний тиск окремого компонента реакції не впливає на константу рівноваги . З підвищенням або зниженням тиску в подібних реакціях змінюється кількість молів окремих газів у газовій суміші, але так, що константа рівноваги залишається незмінною. (відповідь – підвищення температури призведе до зміщення рівноваги ліворуч і зменшення константи рівноваги, а підвищення тиску приведе до зміщення рівноваги праворуч, але на значення константи рівноваги не вплине)

Задача N58. У скільки разів збільшиться чи зменшиться константа рівноваги реакції з підвищенням температури від 25 до 50 о С, якщо D H298 = 70 кДж/ моль ? ( відповідь - збільшиться у 8,9 раза)

Подібна задача. Див. задачу N 56.

Фазові рівновагита вчення про розчини

Задача N59. Назвіть найбільш поширені в практиці фазові переходи. (відповідь - випаровування, конденсація, плавлення, кристалізація, сублімація, алотропні перетворення)

Подібна задача.Які питання вивчаються в розділі “Фазові рівноваги та вчення про розчини”? Величезна кількість добре відомих явищ, процесів, які відбуваються навколо нас у природі, на виробництві, супроводжується різними фазовими перетвореннями. Під час обслуговування цих процесів та удосконалення методів їх проведення виникає багато питань, що зв’язані з умовами виникнення нових фаз, їх термодинамічною імовірністю співіснування з іншими фазами, енергетичними витратами на переведення речовин з однієї фази в іншу, з розчинністю речовин у різних фазах та т.ін. За фазових перетворень, на відміну від хімічних, змінюються переважно фізичні властивості речовин, але фазові перетворення так тісно пов’язані з хімічними, що інколи не можна провести чіткої межі між цими процесами. Розробка нових технологічних процесів ще більше загострює ці питання, і в таких випадках суттєвою допомогою можуть бути знання загальних законів, які вивчаються в розділі “Фазові рівноваги та вчення про розчини”. (відповідь – закономірності переходу речовин з однієї фази в іншу)

Задача N60. Записати правило фаз Гіббса та назвати величини, які до нього входять. (відповідь – С = K – Ф + 2, де C – число ступенів вільності системи, K – кількість компонентів, що складають систему, Ф – число фаз у системі)

Подібна задача.Як можна сформулювати правило фаз Гіббса? У різних підручниках можна знайти дещо відмінні формулювання правила фаз Гіббса, прокоментуємо деякі з них. У рівноважній термодинамічній системі, на яку із зовнішніх факторів впливає тільки температура та тиск, число термодинамічних ступенів вільності ( С ) дорівнює кількості компонентів ( K ) мінус число фаз ( Ф ) плюс два. Числом ступенів вільності (С) називається число параметрів (температура, тиск, концентрація), які повністю визначають стан системи при її рівновазі, або ще можна сказати так, що це число параметрів, які можна змінювати в деяких межах без зміни числа і природи фаз у системі. За цим параметром системи умовно поділяють на безваріантні (С = 0), одноваріантні (С = 1), двоваріантні (С= 2) і т.ін.. Далі на конкретних прикладах ще буде пояснюватись фізична суть цього поняття – число ступенів вільності. Кількість компонентів системи - це кількість складових частин, що входять у систему, за відрахуванням кількості хімічних рівнянь, які зв’язують речовини між собою. Наприклад, система складається з водню, кисню та води, тоді складових частин у системі буде 3, але компонентів -2, тому що існує можливість переходу однієї складової частини системи в іншу за рахунок хімічної реакції: H2 ( г) + ½ O2(г) = H2 O(г). Тобто можна скласти одне рівняння зв’язку між складовими частинами: = P H2 O/ (P H2 P0,5 O2 ). Фазою називають частини системи, які мають певний хімічний склад і термодинамічні властивості, а також відділені від інших частин поверхнею розділу. Ще визначають фазу як однорідну частину неоднорідної системи, яка може бути виділена з системи будь-яким механічним засобом. Правило фаз Гіббса використовується для вирішення багатьох питань, які виникають під час аналізу фазових рівноваг, з методикою вирішення деяких з цих питань буде ознайомлено далі. Правило фаз Гіббса використовується не тільки, коли на рівновагу в системі впливають два параметри (Т та Р), але воно дійсне і тоді, коли цих параметрів більше. Так наприклад, коли на рівновагу в системі впливає температура, тиск ще й магнітне поле, то рівняння фаз Гіббса записується так: С = K – Ф + 3. Коли процеси в системах протікають при сталому тиску або температурі, тоді рівняння буде мати вигляд С = K – Ф + 1;

Задача N61. Розрахувати кількість компонентів у системі NH4 Cl( кр ) = NH3(г) + Cl2(г) . (відповідь – 2)

Подібна задача. Чи може залежати кількість компонентів у системі від способу її утворення? Це можна проілюструвати таким прикладом. Розглянемо два варіанти утворення системи

CO( г) + Cl2(г) = COCl2(г) . У першому варіанті для утворення COCl2 візьмемо точно по одному молю CO та Cl2 , тоді буде справедливим рівняння P CO = P Cl2. Кількість компонентів у системі буде на два менше складових частин, тому що буде справедливим і інше рівняння, що виражає константу рівноваги цієї реакції = P COCl2 / (P COP Cl2 ) . Тоді К = 3 – 2 =1.У другому варіанті, якщо узяти неоднакові кількості молів CO та Cl2 , то К = 3 – 1 =2.

(відповідь - число компонентів у системі може залежати від способу її утворення)

Задача N62. Розрахувати число ступенів вільності (варіантність) системи (С), яка виникає з термічним розкладом С aCO3 за умови змінних температури та тиску . (відповідь – система одноваріантна (С= 1))

Подібна задача.Розрахувати варіантність системи FeO( кр ) + CO(г) = Fe(кр) + CO2(г)

при р = const. Використаємо правило фаз Гіббса, яке для нашого випадку (р = const) запишемо у вигляді C = К – Ф + 1. Кількість складових частин у системі – 4. Рівняння зв’язку - 1, таким рівнянням зв’язку в даному випадку є вираз константи рівноваги для цієї реакції = P CO2 / P CO, а тому кількість компонентів К = 4- 1 =3. Число фаз також три (Ф = 3): дві кристалічні фази (оксид заліза та залізо) і одна газоподібна фаза (гази практично завжди утворюють одну фазу, що являє собою розчин одного газу в іншому). Підставимо всі значення в рівняння Гіббса і одержимо C = К – Ф + 1 = 3 – 3 + 1 = 1. (відповідь - С = 1)

Задача N 63. Розрахувати за допомогою правила фаз Гіббса максимально можливе число фаз, що знаходяться в стані рівноваги, в однокомпонентній системі за умови змінних температури та тиску.

(відповідь – три фази)

Подібна задача.Розрахувати мінімальну кількість параметрів, потрібних для повного опису однокомпонентної системи за умови змінних температури та тиску. Число ступенів вільності (варіантність системи – С) можна трактувати (за Гіббсом) як мінімальну (мінімально можливу) кількість параметрів, що потрібні для повного опису системи. Виходячи з рівняння Гіббса C = К – - Ф + 2, Cmax буде тоді, коли число фаз буде найменшим. Найменше число фаз у системі (Фmin) не може бути меншим за 1, а тому Cmax = K – Фmin + 2 = 1 – 1 + 2 = 2. (відповідь – мінімальна кількість параметрів для повного опису однокомпонентної системи дорівнює двом - це температура та тиск).

Задача N 64. Розрахувати всі можливі варіанти числа ступенів вільності на діаграмі стану води.(відповідь–можливі варіанти–0 ; 1та2)

Подібна задача.Назвати, які залежності ілюструють кожна з трьох ліній на діаграмі стану води.Одна з важливих цілей розділу “Фазові рівноваги” - навчити студентів “читати” елементарні діаграми, які у вигляді рисунків наочно ілюструють різноманітні властивості систем. Однією з таких простих діаграм є діаграма стану води.На діаграмі лінії АО, ВО та СО поділяють поле діаграми на три області існування води в кристалічному, рідкому та газоподібному стані залежно від температури та тиску. Лінія АО ілюструє залежність температури плавлення води від тиску. Так, наприклад, при тиску Р1 температура плавлення води буде Т2 . З діаграми видно, що зі збільшенням тиску до Р2 температура плавлення води буде Т1 . Зменшення температури плавлення води зі

збільшенням тиску обумовлено нахилом лінії залежності температури плавлення води від тиску (АО) ліворуч. Для дуже незначної кількості речовин зі збільшенням тиску температура плавлення зменшується, а для переважної кількості речовин ця лінія має нахил праворуч, тому для більшості речовин зі збільшенням тиску температура плавлення зростає. Про цю особливість

P A B


рідина

Р2

Р1

кристали

O

пара

C

Т1 Т2 Т3 Т4 Т

води ще будемо говорити нижче. Лінія ВО ілюструє залежність тиску насиченої пари над рідкою водою від температури. Рідини киплять тоді, коли тиск їх насиченої пари досягне тиску в навколишньому середовищі (наприклад, атмосферного тиску), а тому температура кипіння води при значеннях тиску Р1 та Р2 буде, відповідно, Т3 та Т4 . Виходячи з цього, крива ВО може ще трактуватися як залежність температури кипіння води від тиску. Лінія СО ілюструє залежність тиску насиченої пари води над кристалами води (льодом) від температури. Точка, де перетинаються всі три лінії, відповідає безваріантному стану системи (С = 0). За правилом Гіббса для речовини може бути тільки одна така точка. Це потрібно розуміти так, що в стані термодинамічної рівноваги всі три фази води: кристалічна, рідка та газоподібна можуть співіснувати тільки за певних умов. Цю точку часто називають потрійною точкою, і для води вона має значення: Р = 4,5 мм.рт.ст. та Т = 0,01 о С. На прикладі цієї точки можна проілюструвати поняття безваріантність системи (С = 0). Дійсно, не можна змінити ніяким чином ні температуру, ні тиск, щоб одна з фаз не зникла в стані рівноваги. У природі і на практиці часто можна бачити співіснування всіх трьох фаз води, але це тільки тому, що не наступив стан рівноваги в системі, до якого системи можуть прямувати тривалий час. Потрібно прорахувати для інших можливих точок діаграми варіантність і подумати над цим важливим висновком, що витікає з правила фаз Гіббса. (відповідь – дів. весь текст пояснення до задачі)

Задача N 65. Розрахувати за допомогою рівняння Клапейрона - Клаузіуса температуру кипіння води при зовнішньому тиску 2 атм.

(відповідь – 120,7 о С)

Подібна задача.Для яких цілей може бути використане рівняння Клапейрона-Клаузіуса? У задачі N64 розглянуто діаграму стану води. Подібні діаграми можна побудувати для багатьох речовин. За допомогою таких діаграм розвя’зують багато різноманітних задач, в яких розраховують параметри систем при фазових переходах. Рівняння Клапейрона-Клаузіуса залежно від того, теплота якого фазового переходу в нього підставляється, в аналітичній формі описує всі три криві на діаграмах стану однокомпонентних систем. У практиці найбільш поширені два вигляди цього рівняння. Перший вигляд рівняння, яке використовується для опису рівноваги кристали – рідина, тобто це рівняння є математичним описом лінії АО (див. зад. N64), наведемо без доказу в такому вигляді dP/dT = D H ф.п. / ( D V ф.п. × Tф.п.), деP - тиск, T – температура, D H ф.п. – теплота плавлення, D V ф.п. - зміна мольного об’єму при плавленні речовини, Tф.п. - температура плавлення. Для прикладу використання такого вигляду рівняння Клапейрона-Клаузіуса розв’яжемо задачу. Визначити, на скільки потрібно збільшити тиск, щоб температура плавлення льоду зменшилась на 1о С. Якщо перейти від нескінченно малих до кінцевих змін, то можна записати:dP/dT = D P/ D T = D H ф.п. / ( D V ф.п. × Tф.п.) , звідси виходитьD P = ( D H ф.п. × D T) / ( D V ф.п. × Tф.п.). Тепер розглянемо фізичний зміст кожного з членів цього рівняння і методику їх знаходження в довідниках: D H ф.п. - теплота фазового переходу при плавленні кристалічної води може бути знайдена як різниця між значенням стандартної теплоти утворення води в рідкому та кристалічному стані,які візьмемо з довідника і запишемоD H ф.п. = D H o H2 O(p) - D H o H2 O(кр) = -285,83 – (- 291,85) = = 6,02 кДж/ моль; D T - зміна температури плавлення води за умови задачі D T = - 1;

D V ф.п. - зміна мольного об’єму води являє собою різницю між об’ємом одного моля води в рідкому стані та об’ємом одного моля води в кристалічному стані, а останні значення можуть бути розраховані як частка від ділення молярної маси води на густину води у відповідному стані, отже запишемоD V ф.п. = M H2 O/ r ( р ) - M H2 O/ r( кр ) = 18 /0,9998 - 18/0,9168 =

= - 1,63 см3 / моль = -1,63 × 10-6 м3 / моль. На останнє значення потрібно звернути увагу, а саме на те, що воно має від’ємний знак. Це означає, що об’єм одного моля води в кристалічному стані більше від об’єму одного моля води в рідкому стані, і в цьому виявляється особливість (унікальність) води як речовини. Завдяки цьому кристали води (лід) плавають на її поверхні на відміну від кристалів інших речовин, які при їх утворенні тонуть у рідинах. Ця ж властивість води обумовлює від’ємний нахил лінії АО - залежності температури плавлення води від тиску на діаграмі стану води (див. рисунок до задачі N64). Для переважної більшості речовин ця лінія має додатній нахил (праворуч), а це означає, що на відміну від води температура плавлення більшості речовин з підвищенням тиску зменшується;Tф.п. - температура, при якій плавиться лід за умови задачі ( у рівняння Клапейрона-Клаузіуса завжди входить тільки абсолютна температура), отжеTф.п. = 273 K. Тепер є можливість розрахувати значення зміни тиску, потрібне для того, щоб вода плавилась при –1о С, підставивши всі дані в рівняння Клапейрона-Клаузіуса,

D P = ( D H ф.п. × D T) / ( D V ф.п. × Tф.п.) =(6020 × (-1))/(273 × (-1,63 × 10-6 )) =

= 1,35 × 107 Н / м 2 = 133 атм.

Другий вигляд рівняння Клапейрона-Клаузіуса використовується для розрахунків параметрів процесів при випаровуванні і сублімації. Такі фазові переходи дуже змінюють об’єм систем (див. задачу N42), а тому можна записати: D V ф.п. = V( г ) – V(кр) V( г ). З рівняння Менделеєва-Клапейрона витікаєV( г ) = (RT)/P(г) . Опустимо всі індекси (ф.п., г) для скорочення записів і підставимо всі величини в рівняння Клапейрона-Клаузіуса

dP/dT = D H ф.п. / ( D V ф.п. × Tф.п.) = D H / ((RT)/P × T).

Перепишемо dP/P = ( D H × dT) / (RT2 ) і , ураховуючи, що dP/P = dlnP, одержимо рівняння dlnP = ( D H × dT) / (RT2 ) . Ураховуючи широке використання цього рівняння для різних розрахунків параметрів процесів фазових переходів рідина-газ та кристали-газ, проведемо деякий його аналіз. Так, якщо припустити, що D H не залежить від температури і взяти невизначений інтеграл dlnP = D H/R dT / T2 , тоодержимо рівнянняdlnP = - D H/R × 1/T + b. Це рівняння прямої, що не проходить через початок координат, а тому залежність логарифма тиску насиченої пари від температури є лінійною, що значно полегшує аналіз та розрахунки параметрів фазових переходів рідина - газ та кристали – газ. Далі, як і під час аналізу ізобари (див. задачу N56), легко показати, що теплота випаровування рідини (D H) може бути знайдена за тангенсом кута нахилу (a ) прямої lnP = f(1/T) і розрахована за рівняннямD H = - tg a × R. Якщо взяти визначений інтегралза двома значеннями температури Т1 та Т2 і, відповідно, за двома значеннями тиску насиченої пари Р1 та Р2 LnP,T 1 LnP,T 2 dlnP = D H/R T 1 T 2 dT / T2 , то одержимо рівняння Клапейрона-Клаузіуса в інтегральній формі, яке зв’язує тиск насиченої пари рідини при двох значеннях температури з теплотою фазового переходу (випаровування чи конденсації)

ln P ,T2 = ln P ,T1 + D H/R (1/T1 – 1/T2 ). (відповідь - для різноманітних розрахунків параметрів процесів, що протікають під час фазових переходів в однокомпонентних системах)

Задача N 66. Розрахувати тиск насиченої пари води при температурі 150 о С. (відповідь – 5,36 атм)

Подібна задача.Розрахувати температуру кипіння води на висоті над рівнем моря 6 км, де тиск 354 ммрт.ст. У довіднику знайдемо значення теплоти випаровування води як різницю між значеннями стандартної теплоти утворення води рідкої та газоподібної.

D H випаровування води =D Hо H2 O(р) – D Hо H2 O(г) = -241,81 – (-285,83) = 44,02 кДж/моль. Урахуємо також, що при кипінні води при 100 о С (373 К) тиск насиченої пари води дорівнює атмосферному (1атм, 760 ммрт.ст. або 1,013 × 105 Па), підставимо всі ці дані в рівняння Клапейрона-Клаузіуса ln P ,T2 = ln P ,T1 + D H/R (1/T1 – 1/T2 ) і одержимо рівняння з одним невідомим T1 : ln760= ln354+ 44020/8,31 (1/T1 – 1/373), звідси знайдемо T1 = 354 К = 81 о С. ( відповідь – 81 о С)

Задача N 67. Розрахувати, яке максимальне число фаз може існувати в стані рівноваги в двокомпонентній системі при постійному тиску. (відповідь – 3)

Подібна задача.Розрахувати кількість параметрів, потрібних для повного опису двокомпонентної системипри Р const та Т const. Використаємо правило фаз Гіббса, як і під час розв’язання задач NN 60 – 62. Cmax = 2 – Фmin + 2 = 2 –1 + 2 = 3. Це означає, що графічне зображення властивостей двокомпонентної системи при Р const та Т const повинно бути у просторовій (об’ємній) системі координат типу Декартової, внаслідок того, що потрібно урахувати (крім температури та тиску) ще один параметр двокомпонентної системи, а саме, склад системи (концентрацію), який впливає на її властивості. Просторові зображення діаграм, де три змінні величини, часто використовують на практиці, але якщо є можливість зображати діаграми двокомпонентних систем не просторово, а в площині, то охоче цим користуються. Можливість графічно зображати властивості двокомпонентних систем у площині з’являється тоді, коли процеси протікають при Р = const, а переважна більшість технологічних процесів протікають саме при сталому тиску. У такому випадку Cmax = 2 – Фmin + 2 = 2 –1 + 1 = 2 і діаграму властивість системи – склад системи є можливість зображати в площині. (відповідь – може бути рівною 3 і 2 залежно від умов)

Задача N 68. Чи може бути розчин твердим? Наведіть приклад. (відповідь – може, приклад - нержавіюча сталь марки Х17Н13М2Т)

Подібна задача.Що називають розчином? Засоби графічного зображення складу розчинів.Розчином називають гомогенну суміш і з двох або більше компонентів, кожний елемент об’єму якої має однакові хімічні та термодинамічні властивості. Зверніть увагу на те, що у визначенні поняття “розчин” не має слова рідина, отже розчини можуть бути твердими (кристалічними), рідкими та газоподібними. Основною ознакою розчину є гомогенність системи (відсутність межі розділу), а також однаковість хімічних та термодинамічних властивостей будь-яких частин цієї системи. Дуже часто склад розчинів зображають у вигляді лінії, наприклад так:


A 10 20 30 40 50 60 70 80 90 B

Цифри, які стоять напроти поділки на лінії складу системи, можуть позначати масові відсотки, мольні відсотки та ін. Літера А відповідає складу системи з одного компонента – 100 % А. Поділка напроти цифри 20, наприклад, відповідає складу системи: 20 % компонента В та 80 % компонента А. На практиці склад (концентрацію) двокомпонентної системи достатньо характеризувати вмістом одного компонента. Так, наприклад, якщо в системі міститься 70 % компонента В, то зрозуміло, що вміст компонента А складає 30 %. Якщо до лінії складу системи поставити перпендикуляр і уздовж нього відкласти якісь властивості системи (тиск насиченої пари, температуру плавлення і т.ін.), то це й буде називатися діаграмою стану двокомпонентної системи.

Задача N 69. Розрахувати мольну частку хлориду калію у водному розчині концентрацією 10 мас. % KCl. (відповідь – NKCl = 0,026 ).

Подібна задача. Які існують способи виразу концентрації (складу) двокомпонентних систем? Існує багато способів виразу концентрації, але відповідно до програми розглянемо тільки основні.

Масова концентрація показує, скільки грамів розчиненої речовини знаходиться в 100 г розчину. Часто її позначають мас.%. Оскільки в більшості випадків мають справу з водними розчинами, то частіше не указують, що розчинником є вода. А якщо розчинник не вода, а якийсь інший, то, як правило, указують і його назву. Наприклад, запис “розчин 10 мас.% NaCl” потрібно розуміти так, що в 100 г цього розчину міститься 10 г NaCl та 90 г H2 O.

Мольна частка показує відношення кількості молів розчиненої речовини до сумарної кількості молів розчиненої речовини та молів розчинника в розчині. Позначається мольна частка літерою N. Якщо позначити літерою А розчинник, а В- розчинену речовину, то її мольна частка в розчині будеNB = nB /( nB + nA ). Так наприклад, мольна частка хлориду натрію (NNaCl ) у воді з 10 мас.% NaCl NNaCl = nNaCl /( nNaCl + nH 2 O ) = (gNaClNaCl )/(( gNaClNaCl ) + +(gH 2 O H 2 O )) = (10/58,5)/(( 10/58,5) + (90/18)) = 0,032. Корисним буде засвоїти, наприклад, щоNNaCl + NH 2 O = 1 або те, що в розчині на 32 моля хлориду натрію припадає 968 молів води, тобто на кожний з іонів хлору та натрію припадає 968/(32 × 2) 15 молекул води. Молярність показує кількість молів речовини в 1 літрі розчину, позначається часто літерою с. Наприклад, якщо написано:“розчин HCl, c = 0,1”, то це означає, що в 1 літрі такого розчину міститься 0,1 моля HCl або 36,5 × 0,1 = 3,65 г HCl. Також можна сказати, що в одному літрі такого водного розчину міститься наближено (6,02 × 1023 ) × 0,1 = 6,02 × 1022 іонів водню і така ж кількість іонів хлору. Нормальність показує, скільки г-екв. pечовини в 1 літрі розчину, позначається літерою н. Наприклад, якщо написано: “розчин H2 SO4 , н = 0,5”, то це означає, що 1 літр розчинумістить 0,5 г-еквівалента сірчаної кислоти або (98/2) × 0,5 = 24,5 г H2 SO4 . Також можна сказати, що в одному літрі такого розчину міститься наближено 3,1 × 1023 іонів водню, а молярність такого розчину с = 0,25.Моляльність показує, скільки молів речовини в 1 кг розчинника, позначається літерою m. Наприклад, одномоляльний розчин сірчаної кислоти (H2 SO4 , m = 1,0) складається з 98 г H2 SO4 та 1000 г H2 O.

Існує ще багато способів виразу концентрації (складу) розчинів, наприклад, масова частка , об’ємна частка та інші, які не важко зрозуміти, якщо засвоїти основні, що указані вище.

(відповідь – див. вище)

Задача N 70. Розрахувати мольну частку розчину, що складається з 15 г сірчаної кислоти та 35 г води. (відповідь – NH 2 SO 4 = 0,073)

Подібна задача. Див. задачу N69.

Задача N 71. Розрахувати наближено, скільки атомів заліза припадає на один атом вуглецю в чавуні, що містить 2 мас.% С.

(відповідь – 10,5 атома заліза на 1 атом вуглецю)

Подібна задача. Розрахувати моляльність розчину сірки в залізі, якщо концентрація сірки в залізі виражається мас.% S = 1,0. Це означає, що в 100 г такого розчину міститься 1 г сірки та 99 г заліза, тоді за пропорцією легко знайти, що в 1000 г заліза-10,1 г сірки або 10,1/32,06 = 0,315 моля сірки. Отже моляльність розчину буде дорівнювати m = 0,315/1000 = 3,15× 10-4 . (відповідь - m = 3,15 × 10-4 ).

Задача N 72. Розрахувати нормальність(н), молярність(с) та моляльність( m ) водного розчину 10 мас.% H2 SO4 .

(відповідь – н = 2,175 ; с = 1,088; m = 1,134)

Подібна задача. Розрахувати, скільки грамів води та сірчаної кислоти в одному літрі розчину
20 мас.% H2 SO4 . Потрібно знати загальну масу 1 л такого розчину, яку можна знайти за допомогою значень густини розчинів (довідник, стор. 19). Отже розчин 20 мас.% H2 SO4 має густину 1,139 кг/м3 , а 1 л такого розчину буде мати масу 1139 г. Маса сірчаної кислоти буде рівною 1139× 0,2 = 227,8 г, а маса води - 1139 × 0,8 = 911,2 г.
(відповідь - H2 SO4 – 227,8 г, H2 O – 911,2 г)

Задача N 73. Чи можна уважати, що гранично розбавлений розчин має властивості ідеального ? (відповідь – тільки відносно розчинника, але не розчиненої речовини)

Подібна задача. Яка класифікація розчинів існує? Будь-які розчини поділяють на ідеальні, гранично розбавлені та реальні. Ідеальні розчини - це такі, які при утворенні (змішуванні компонентів) не нагріваються і не охолоджуються, а їх об’єм дорівнює сумі об’ємів компонентів, що узяті для готування розчину. Характерною ознакою ідеальних розчинів є лінійна зміна властивостей розчину зі зміною їх складу. Наприклад, якщо змішати дві повністю розчинні одна в другій рідини А та В, що утворюють ідеальний розчин, то залежність тиску насиченої пари над розчином від його складу буде мати прямолінійну залежність, як це показано на рисунку нижче

Р

Ро А

Р Р

Ро В


А NA В

Така прямолінійна залежність тиску насиченої пари від складу розчину характерна для ідеальних розчинів. Величини Ро А та Ро В - тиск насиченої пари над чистими компонентами А та В, відповідно. Тиск насиченої пари над розчином (РР ), наприклад, складу NA (NA - мольна частка А), може бути розрахований за правилом адитивностіРР = Ро А × NA + Ро В × NA . Це правило розрахунків властивостей розчину за властивостями окремих компонентів може бути використане тільки для ідеальних систем, але його часто використовують і для систем, які не дуже відхиляються від ідеальних. Гранично розбавлені розчини - це такі, в яких концентрація одного з компонентів двокомпонентної системи наближається до нуля. Такі розчини щодо розчинника практично є ідеальними, але відносно розчиненої речовини цього сказати не можна. Реальні розчини - це такі, утворення яких супроводжується тепловими ефектами і зміною об’єму.Реальні розчини - це системи, які найбільше зустрічаються в практиці. Для того, щоб пояснити суть процесів зміни ентальпії (D H ) і об’єму (D V ) в результаті утворення реальних розчинів, наведемо такий приклад. Якщо взяти 100 мл води та 100 мл сірчаної кислоти і їх змішати, то утвориться 180 мл розчину кислоти у воді. Це можна записати так D V = Vp – (V в + Vк) = 180 – (100 + 100) = -20 мл, деVp, V в та - об’єми розчину, води та кислоти, відповідно.У цьому випадку розчин займає менший об’єм, ніж об’єм його складових частин (D V < 0 ), але для реальних розчинів відомо багато і таких випадків, коли D V > 0 . Добре відомо, що при змішуванні сірчаної кислоти з водою розчин дуже нагрівається, вилучається велика кількість теплоти в навколишнє середовище, процес екзотермічний (D H < 0 ), тому змішування здійснюють дуже обережно, щоб запобігти нещасному випадку. Багато також прикладів, коли процес утворення розчину протікає з поглинанням теплоти з навколишнього середовища (температура розчину внаслідок процесу утворення стає меншою, ніж температура компонентів до їх змішування, D H > 0 ). Якщоендотермічний процес розчинення однієї речовини в другій приводить до утворення розчину, то можна сказати, що процес протікає самодовільно і зміна ізобарного потенціалу в результаті утворення розчину менше нуля (D G < 0 ), утворення розчину протікає не завдяки ентальпійному, а за рахунок ентропійного фактора (D S > 0 ), тому що D G = D H - Т D S < 0. Вплив ентальпійного та ентропійного факторів на процеси, що протікають самодовільно, див. задачу N33.

Розглянемо тепер, який вигляд може мати діаграма тиск насиченої пари – склад системи для реальних розчинів на відміну від ідеальних.Для реальних розчинів залежність тиску насиченої пари від складу розчинів криволінійна, тобто спостерігаються додатні (+) або від’ємні (-) відхилення від прямолінійної залежності, яка характерна для ідеальних розчинів. Причому від’ємні відхилення супроводжуються стисканням систем (D V < 0 ) і вилученням теплоти (D H < 0, розчин нагрівається), а додатні - розширенням систем (D V > 0 ) і поглинанням теплоти (D H > 0, розчин охолоджується) з їх утворенням. Користуватися правилом адитивності для розрахунків властивостей реального

Р

Ро А

+

-

Ро В

А В

розчину за властивостями його компонентів також потрібно обережно, тому що помилка обов’язково буде, а величина її буде тим меншою, чим менше даний розчин відхиляється від ідеального. Для того, щоб урахувати міру відхилення властивостей реальних розчинів від ідеальних, в теорії та практиці розрахунків властивостей розчинів часто використовується поняття активності (a ). Активність зв’язана з концентрацією розчину (N )через коефіцієнт активності (g ) рівняннямa=N g. Активність - це ніби ефективно діюча концентрація (уявна), тобто така, яка кількісно зв’язана з властивостями розчину, а N – аналітична концентрація (реальна). Фактично коефіцієнт активності є мірою відхилення властивостей реального розчину від ідеального. У більшості випадків коефіцієнт активності коливається між нулем та одиницею (0 < g > 1), визначається експериментально і наводиться в довідниках для різних розчинів залежно від концентрації (наприклад, див. довідник стор. 130) .(відповідь – класифікують на ідеальні, гранично розбавлені та реальні розчини)

Задача N 74. Як змінюється розчинність азоту в рідких металах зі збільшенням тиску та температури ? ( відповідь – розчинність азоту буде зростати пропорційно кореневі квадратному зі значення тиску азоту і також з підвищенням температури металу)

Подібна задача. Які основні закономірності лежать в основі розчинності газів у рідинах? Розчинністю називається максимально можлива рівноважна концентрація речовини в розчиннику при певній температурі. Розчинність речовин ще недостатньо вивчена теоретично, а тому на практиці частіше керуються даними експерименту, які знаходять у довідниках. Одною з відомих закономірностей залежності розчинності газів від тиску є закон Генрі, відповідно до якого розчинність газів пропорційна тиску газу над розчинником С = кР , де С- розчинність газу, к – коефіцієнт пропорційності, який залежить від природи газу і розчинника, Р- тиск газу над розчином. Розчинення газів у воді завжди супроводжується вилученням теплоти (DH < 0), а тому з підвищенням температури (як це витікає з принципу Ле-Шательє, див. задачу N40) розчинність газів у воді зменшується. Розчинність газів у рідких металах має суттєві відмінності від розчинності газів у воді. Газ розчиняється в рідкому металі не в молекулярній, а в атомарній формі. Так, наприклад, азот до того, як перейти в метал з газової фази, повинен дисоціювати на атомарний за рівнянням N2 = 2N. Така реакція протікає з витратами енергії (DH > 0), а тому з підвищенням температури розчинність газів у рідких металах зростає. Крім того, розчинність газу в металі буде пропорційна тиску газу не в молекулярній, а в атомарній формі. Ураховуючи цю обставину, а також виражаючи константу рівноваги (Кр ) через парціальні рівноважні тиски молекулярного (Р N 2 ) та атомарного (Р N ) азоту над рідким металом, далі запишемоКр = Р2 N / Р N 2 . Звідси Р N = , підставимо Р N в рівняння ГенріС = кР N = =к = K .З останнього рівняння видно, що розчинність газу в рідких металах пропорційна кореневі квадратному зі значення тиску газу над металом, цю закономірність літературі часто називають законом Сівертса. (відповідь – закони Генрі і Сівертса)

Задача N 75. Розрахувати, на скільки мм рт.ст. зменшиться тиск насиченої пари води при 100 о С, якщо в 90 г чистої води розчинити 10 г цукру. (молекулярна маса цукру – 342). (відповідь - на 4,5 мм рт.ст.)

Подібна задача. Розрахувати наближено тиск насиченої пари води при 100 о С над розчином у ній деякої нелетючої речовини, мольна частка якої складає 0,1. Над водним розчином нелетючої речовини (це речовина, яка має температуру кипіння набагато вищу від температури кипіння води) тиск насиченої пари води тим нижче, чим вища концентрація розчиненої речовини. Сам факт зниження тиску насиченої пари розчинника над розчином є причиною зміни багатьох властивостей розчинів, які, в свою чергу, суттєво впливають на явища, що мають місце в природі та техніці. Такі ж і подібні зміни спостерігаються і в неводних розчинах, але тут розглядаються тільки водні. Розгляд закономірностей зміни деяких властивостей розчинів у результаті збільшення концентрації розчинених речовин почнемо з закону Рауля. Закон Рауля установлює, що відносне зниження тиску насиченої пари розчинника над розчином дорівнює мольній частці розчиненої речовини . У математичній формі цей закон можна записати так: (Po A - PA )/Po A = NB , деPo A –тиск насиченої пари розчинника над чистим розчинником, PA – тиск насиченої пари розчинника над розчином, NB - мольна частка розчиненої речовини. У загальному випадку закон Рауля справедливий для ідеальних та гранично розбавлених розчинів. Він постулює прямолінійну залежність тиску насиченої пари розчинника над розчином залежно від концентрації розчиненої речовини. У цьому легко переконатись, якщо переписати закон Рауля, урахувавши, що NB + NА = 1. Виразимо з цього рівняння NB через NА і, підставивши в закон Рауля, одержимо ще один його вираз PA = Po A × NА. Покажемо цю залежність у вигляді рисунка. На цьому рисунку лінія 2 ілюструє залежність тиску насиченої пари розчинника А від концентрації розчиненої речовини В для ідеальних або гранично розбавлених розчинів. Криві 1 та 3 ілюструють цю ж залежність для випадку реальних розчинів з додатними або від’ємними відхиленнями від закону Рауля. Є багато реальних розчинів, які дуже близькі до ідеальних, і залежність тиску насиченої пари обох компонентів на всьому діапазоні значень концентрації прямолінійна. І взагалі, залежн від того, наскільки можливий опис властивостей систем за допомогою закону Рауля (тобто лінійна або криволінійна залежність тиску насиченої пари компонентів розчину від складу системи), можна міркувати, якою мірою цей розчин відхиляється від ідеального. Часто за браком даних про той чи інший розчин припускають, що розчин є ідеальним, і розраховують якісь його властивості за допомогою закону Рауля, усвідомлюючи, що в цих розрахунках може бути суттєва похибка. От і наша задача може бути розв’язана з деякою похибкою, але наближено дозволяє оцінити, на скільки знизиться тиск насиченої пари води над розчином порівняно з тиском насиченої пари води над чистою водою,

який при 100 о С дорівнює 760 ммрт.ст. Для цього використаємо закон Рауля

PH2O= Po H2O × NH2O = 760 (1 - 0,1) = 684 ммрт.ст. (відповідь – 684 ммрт.ст.)


P

Po A

1

2

3

NB

Задача N 76. Розрахувати температуру плавлення чавуну, який має в своєму складі 4,3 мас. % вуглецю. (відповідь – 1099 о С)

Подібна задача. Розрахувати температуру кипіння водного розчину хлориду натрію концентрацією 5 мас % NaCl. Водний розчин буде кипіти тоді, коли тиск насиченої пари води досягне атмосферного тиску. Відомо, що тиск насиченої пари води над розчином менше, ніж над чистою водою, а тому такий розчин буде кипіти при температурі вищій, ніж чиста вода. Щоб у цьому розібратись, а також зрозуміти деякі інші властивості розчинів, почнемо з діаграми стану води, в якій розчинена деяка кількість нелетючої речовини.

P A* A B B*


Po

D P


O


D T з D T к O*

T1 T2 T3 T4 T

На цій діаграмі лінія ВО ілюструє залежність тиску насиченої пари чистої води від температури. Тому, якщо Ро - атмосферний тиск, то Т3 -температура кипіння води при атмосферному тиску (100 о С). Лінія В*О* ілюструє залежність тиску насиченої пари води над розчином певної концентрації розчиненої речовини. Із рисунка видно, що тиск насиченої пари води над розчином при Т3 (100 о С) буде меншим на деяку величину DP, а тому розчин при Т3 кипіти не буде. Для того, щоб розчин закипів, його потрібно нагріти до температури Т4 , коли тиск насиченої пари води над розчином досягне атмосферного. Тобто, розчини киплять при вищій температурі, ніж чисті розчинники, на деяку величину DTк. Із рисунка видно, що розчин буде замерзати при нижчій температурі, ніж чистий розчинник на деяку величину DTз. Таким чином, розчини киплять при вищій, а кристалізуються при нижчій температурі, ніж чистий розчинник, тобто розчини мають більш широкий діапазон рідкого стану у порівнянні з чистими розчинниками. Ця обставина має великий вплив на природні явища і часто використовується в техніці, а тому розглянемо, як розраховується зміна температури кипіння та замерзання розчинів залежн від їх концентрації і природи розчинника. Формули,за якими можна розрахувати цю зміну температури, мають вигляд DTк.= Е× m, DTз = K× m, де Е – ебуліоскопічна стала, К- кріоскопічна стала, m – концентрація розчиненої речовини (моляльність). Ебуліоскопічна та кріоскопічна сталі залежать від природи розчинника і можуть бути розрахованідля кожного розчинника за його властивостями (див. у підручниках). Наведемо таблицю значень К та Е для деяких розчинників

Розчинник Е К

H2 O 0,52 1,86

C6 H6 (бензол) 2,61 5,1

ССl4 5,4 29,8

Fe(p) - 116,5

Для розв’язання задачі потрібно концентрацію у мас.% перевести в моляльність: 5 г NaCl припадає на 95 г води, а в 1000 г води буде (1000 × 5)/95 = 52,63 г або 52,63/58,5 = 0,8997 моля NaCl, тобто моляльність (див. задачу N 64) m = 0,8997. Потрібно урахувати ще одну обставину перед розрахунком DTк. Рівняння DTк.= Е× m правильне тільки для випадку, коли розчинена речовина не електроліт, тобто така, яка не дисоціює на іони. Підвищення температури кипіння та зниження температури замерзання (кристалізації) називають колігативними властивостями, тобто такими, які залежать від кількості часток у розчині. Хлорид натрію - сильний електроліт і розпадається у водному розчині на катіон та аніон, тобто замість однієї частки в розчині утворюється дві (ізотонічний коефіцієнт i = 2). А наприклад, для FCl3 - i = 4. Тому формули для розрахунків збільшення температури кипіння (DTк) та зменшення температури кристалізації (замерзання) (DTз) розчинів електролітів будуть мати вигляд, відповідно, D T к = Е × m × i та D T з = К × m × i . Тепер розрахуємо зміну температури кипіння водного розчину хлориду натрію концентрацією 5 мас % NaCl: DTк.= Е× m× i = 0,52× 0,8997× 2 = 0,936 o C. А температура кипіння розчину буде 100 + 0,936 = 100,936 о С. (відповідь - наближено 101 о С).

Задача N 77. Чи відрізняються між собою склад рідини і пари в стані рівноваги для ідеальних розчинів і якого компонента в парі більше, якщо в рідині їх мольні частки рівні ? ( відповідь – відрізняються, в парі буде більше того компонента, температура кипіння якого менша)

Подібна задача. Чому дорівнює відношення мольних часток компонентів у парі в стані рівноваги для двокомпонентних ідеальних розчинів? Розглянемо рівняння, яке можна вивести за допомогою закону Рауля N*A /N*B = (Po A NA )/(Po B NB ), деN*A - мольна частка компонента А в парі, N*B - мольна частка компонента В в парі, Po A - тиск пари чистого компонента А, Po B - тиск пари чистого компонента В, NA - мольна частка компонента А в рідині, NB - мольна частка компонента В в рідині. З цього рівняння витікає, що в парі більша мольна частка того компонента, температура кипіння якого менша . Для того, хто не зрозумів, наведемо такий приклад. Візьмемо ідеальний розчин, для якого NA = NB . Тоді співвідношення N*A /N*B буде обов’язково або більше одиниці, або менше, тому що мало імовірне, щоб значення тиску насиченої пари двох різних рідин були однакові, тобто склад рідини і пари в стані рівноваги навіть для ідеальних розчинів буде відмінним. Крім цього, з даного прикладу видно, що в парі буде більше мольна частка того компонента, нормальна температура кипіння якого при атмосферному тиску менша, тому що тиск насиченої пари для такого компонента буде більшим (чим менша температура кипіння, тим більший тиск насиченої пари рідини або можна сказати, тим більш летюча така рідина). (відповідь – рівне відношенню добутків нормального тиску насиченої пари на мольну частку компонентів у розчині)

Задача N 78. За рахунок яких властивостей двокомпонентної рідкої системи її можна розділити на окремі компоненти шляхом перегонки ? (відповідь – розділення рідин шляхом перегонки можливе, тому що пара над розчином має інший склад, ніж склад самого розчину рідин)

Подібна задача. Сформулювати та пояснити суть першого закону Коновалова. Пара у порівняні з розчином збагачена тим компонентом, додання якого до розчину збільшує тиск насиченої пари та знижує температуру його кипіння . Це можна сказати ще й так, що в пару переходить більше того компонента, температура кипіння якого менша. Краще це можна пояснити за допомогою діаграми рідина-пара двокомпонентної системи, що складається з рідини А та В.

T O Т4

Т3

2

Т2

K L M T1

1

D


A N2 N3 N1 N4 N5 B

Лінія 1 на діаграмі ілюструє залежність температури кипіння розчину відйого складу. Так, наприклад, якщо склад розчину буде N1 , то температура кипіння буде Т1 . Лінія 2 ілюструє залежність складу пари від температури. Так наприклад, якщо розчин складу N1 нагріти до температури Т1 , то рівноважний склад пари над цим розчином буде N2 , тобто пара порівняно з розчином буде збагачена компонентом А, температура кипіння якого менша, отже тиск насиченої пари більше. Якраз про цю важливу властивість розчинів йдеться мова в першому законі Коновалова. (відповідь – пара порівняно з розчином збагачена більш летючим компонентом).

На цій же діаграмі буде зручно пояснити деякі інші можливості такого типу діаграм. Так, якщо розчин складу N1 нагріти при незмінному тиску до температури Т2 , то в рівновазі будуть знаходитись дві фази: газоподібна (пара)складу - N3 і рідка (розчин) складу - N4 . У таких умовах є можливість визначити за діаграмою співвідношення молів речовини, що перейшла в пару і молів речовини, яка залишилась у рідині. Це можна визначити за так званим правилом важеля,

відповідно до якого n п / n р = LM/KL, деn п - кількість молів компонентів у парі, n р - кількість молів компонентів у рідині, LM та KL - довжина відрізків на діаграмі. Якщо продовжувати нагрівати цей же розчин до температури Т3 , то він випарується, вся рідина

перейде в пару, яка буде мати склад N1 . Якщо тепер почати охолоджувати пару складу N1 від температури Т4 до температури Т3 , то в стані рівноваги знову виникнуть дві фази: рідина складу N5 та пара складу N3 . Тепер зробимо ще один важливий висновок відносно до того, які

залежності ілюструють криві 1 та 2 на діаграмі. Крива 1 ілюструє залежність складу рідкої фази (розчину) від температури при випаровуванні і конденсації в рівноважних умовах. Крива 2 ілюструє залежність складу пари від температури при випаровуванні та конденсації в рівноважних умовах. Підкреслюємо, що уміння “читати” діаграми полягає в тому, щоб розуміти, яку залежність ілюструє кожна з її ліній. Не зайвим буде, з метою повторення, розрахувати число ступенів вільності за Гіббсом у точках діаграми К, М, D та О, для яких С= 1, 1, 0 та 2 , відповідно.

Задача N 79. Визначити за діаграмою стану системи H2 O-CH3 COOH мольну частку води в парі, якщо розчин складу 80 мол.% кислоти нагріти від 100 до 110 о С. (відповідь – N Н2 О наближено 32 % )


Подібна задача. Визначити за діаграмою, яка наведена вище, склад рідкої та газоподібної фаз у стані рівноваги, якщо розчин 45 мол.% H2 O нагріти від 100 до 106 о С. (відповідь – склад рідини буде 40 мол.% H2 O, а пари - 50 мол.% H2 O)

Задача N 80. Визначити за діаграмою, що наведена до задачі

N79, на які компоненти можна розділити розчин 50 мол. % CH3 COOH за допомогою ректифікації, указавши при цьому, який компонент буде накопичуватись у нижній частині ректифікаційної колони. (відповідь – на воду та оцтову кислоту, внизу колони буде накопичуватись кислота)

Подібна задача.Що таке ректифікація? Ректифікація - це процес поділу розчинів на компоненти, які складають цей розчин, за допомогою багаторазового випаровування та конденсації. Розглянемо схематично процес ректифікації двокомпонентної системи, яка складається з компонентів А та В. Ліворуч на рисунку наведена діаграма рідина-пара, а праворуч схематично зображена ректифікаційна колона.Якщо узяти розчин складу N1 , розмістити його в нижній частині ректифікаційної колони та нагрівати при постійному тиску якимось джерелом теплоти Qp, то відповідно до діаграми цей розчин закипить при температурі Т1 . Пара над ним буде мати склад N2 та температуру Т1 . Якась кількість цієї пари конденсується, нагріваючи деталі колони, і буде поступово накопичуватися в стані рідини складу N2 з температурою Т2 на першій тарілці колони. Якщо кількість рідини перевищить рівень трубки на тарілці, вона буде стікати по ній донизу, як це показано стрілками. Процес переносу тепла за рахунок випаровування рідини в нижній частині колони і конденсації пари на першій тарілці буде продовжуватись доти, поки на ній накопичиться рідина і нагріється до температури Т2 , при якій розпочнеться її кипіння відповідно до діаграми. У стані рівноваги на першій тарілці рідина буде мати температуру Т2 та склад N2 . Важливою обставиною є те, що на першій тарілці рідина суттєво збагачена компонентом А (склад N2 ) у порівнянні з рідиною в нижній частині колони (склад N1 ). Над рідиною, яка сконденсована на першій тарілці, буде

T T3

N4

T3

N3

T1 T2

N3


Т2

Т2 N2

T1

N2

T3

T1

T4 N1


А N4 N3 N2 N1 В Qp

утворюватись пара з температурою Т2 та складом N3 . Ця пара буде конденсуватися на другій тарілці зі складом N3 та температурою Т3 . У свою чергу, над цією рідиною буде формуватися пара зі складом N4 , як це видно з діаграми.
Це дуже спрощена схема колони, реально вона може нараховувати сотні тарілок, які також зображені схематично. Але основне те, що на найвищій тарілці буде конденсуватися практично чистий компонент А. На виробництві ректифікаційні колони - це складні та громіздкі агрегати, в котрих рідина, яку потрібно розділити на компоненти, частіше подається не знизу колони, а в її середню частину по висоті, а продукти ректифікації відбираються в верхній та нижній частинах, як це показано на схемі унизу.


А

N1

В

Задача N 81. Визначити за двома наведеними нижче діаграмами, на які речовини можна розділити розчини складу N1, N2, N3 та N4, а також указати, в якій частині ректифікаційної колони будуть відбиратись ці речовини. (відповідь – наведена на рисунку, див. нижче)


T NA NA


N1 N2

A В

A N1 NA N2 B


T A B


N3 N4


NA NA


A N3 NA N4 B

Подібна задача.Другий закон Коновалова. Точкам максимуму та мінімуму на кривих залежності тиск насиченої пари – склад системи відповідають суміші, що мають однаковий склад рідини та пари. У другому законі Коновалова йдеться про системи, які настільки відхиляються від ідеальних, що на діаграмах властивість – склад системи з’являються екстремуми.Причому потрібно розуміти, якщо в якійсь системі, наприклад, складу N1